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Classification

Today we will discuss different types of classification methods. One is based on a probabilistic argument, the
other on separable hyperplanes (which is just a fancy word for a plane that divides the feature space).

In classification we are set in a supervised learning situation. That is, we have some training data for which
we have some features X and a response Y . In classification we always has that Y is categorical - i.e. it has a
certain number of levels. They may be ordered, but ordinal situations is out of our scope.

Typically, we begin with the case of assuming that Y is binary – it one has two levels, e.g. {0, 1} or {−1, 1}.
Most classification methods have been derived from this simplest case, and is then extended to deal with
more than two classes.

Model based approach

For the model based approaches, the typical procedure is to compute a posterior probability for a class given
the features. That is, P (Y = y | X = x), where Y is the stochastic variable and y is a state, e.g y = 0 or y = 1
in the binary case. Similarly, X is the random quantity and for a specific observation X has the value(s) x.

A posterior probability is the probability of Y given we have seen the feature information X. The a priori
probability, or short prior, reflects the believe we have about Y before we see the features.

Bayes classifier

A classifier that assigns the class to be the most probable is called a Bayes classifier :

k̂ = arg max
k

P (Y = k | X = x0),

for some features x0.

Binary case

First, we observe that P (Y = 0 | X) + P (Y = 1 | X) = 1, which implies P (Y = 0 | X) = 1− P (Y = 1 | X).
Hence, we can focus just on P (Y = 1 | X), say.

P (Y = 1 | X) = P (Y = 1, X)
P (X) = P (Y = 1, X)

P (X)
P (Y = 1)
P (Y = 1) = P (X | Y = 1)P (Y = 1)

P (X)

For the binary case, we have that a Bayes classifier will assign the class to be 1 if P (Y = 1 | X) > P (Y = 0 | X),
because we know they sum to 1 (there are only two outcomes). Furthermore, we can write

P (Y = 1 | X)
P (Y = 0 | X) > 1

And since the above factorisation of P (Y = 1 | X) also holds for P (Y = 0 | X) we have

P (Y = 1 | X)
P (Y = 0 | X) = P (X | Y = 1)

P (X | Y = 0)
P (Y = 1)
P (Y = 0)
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Hence, we just need a model for P (X | Y = y) and then assign a prior probability to P (Y = 1). Often this is
(maybe confusingly) denoted π = P (Y = 1) with P (Y = 0) = 1− π. Note, π is in this case not 3.1415927.

Naive Bayes

Modelling P (X | Y = y) may not be easy as X can high (extremely) high-dimensional. However, one model
assumption that simplifies this dramatically is that of (conditional) independence:

P (X | Y = y) = P (X1 | Y = y)P (X2 | Y = y) · · ·P (Xp | Y = y) =
p∏

i=1
P (Xi | Y = y)

This turns a complicated model for P (X | Y = y) into a product of simple models – one for each Xi.

Including this in the expression above yields for X = x0,

P (Y = 1 | X = x0)
P (Y = 0 | X = x0) = π

1− π

p∏
i=1

P (Xi = x0i | Y = 1)
P (Xi = x0i | Y = 0)

Hence, if the ratio above is greater than 1, we classify a new observation x0 as Ŷ = 1. Otherwise, classify
Ŷ = 0.

The model has several advantages:

• Simple to estimate parameters (no need for iterative procedures)
• Insensitive to missing data (the term just disappears)
• Works for n� p

naiveBayes in R

The package e1071 contains several methodologies, including naiveBayes and svm (which we will use here).

The naiveBayes assumes that for numerical features, xi follows a normal distribution, with group specific
mean and variance: µy and σ2

y.

For categorical cases we simply tabulate and estimate the associated probabilities from the counts.

Example: Titanic

A small example with the survival of Titanic passengers.
Titanic_tbl <- Titanic %>%

as_tibble() %>%
mutate(n = as.integer(n)) %>%
mutate_if(is.character, factor) %>%
mutate_at(c("Age", "Survived"), funs(fct_rev))

Titanic_tbl %>% kable()

Class Sex Age Survived n
1st Male Child No 0
2nd Male Child No 0
3rd Male Child No 35
Crew Male Child No 0
1st Female Child No 0
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Class Sex Age Survived n
2nd Female Child No 0
3rd Female Child No 17
Crew Female Child No 0
1st Male Adult No 118
2nd Male Adult No 154
3rd Male Adult No 387
Crew Male Adult No 670
1st Female Adult No 4
2nd Female Adult No 13
3rd Female Adult No 89
Crew Female Adult No 3
1st Male Child Yes 5
2nd Male Child Yes 11
3rd Male Child Yes 13
Crew Male Child Yes 0
1st Female Child Yes 1
2nd Female Child Yes 13
3rd Female Child Yes 14
Crew Female Child Yes 0
1st Male Adult Yes 57
2nd Male Adult Yes 14
3rd Male Adult Yes 75
Crew Male Adult Yes 192
1st Female Adult Yes 140
2nd Female Adult Yes 80
3rd Female Adult Yes 76
Crew Female Adult Yes 20

Fitting a naiveBayes (we use the tabular form of the data here)
library(e1071)
nb_titanic <- naiveBayes(Survived ~ ., data = Titanic)

The estimates of prior and P (xi | y)
nb_titanic$apriori

## Survived
## No Yes
## 1490 711
nb_titanic$tables

## $Class
## Class
## Survived 1st 2nd 3rd Crew
## No 0.08187919 0.11208054 0.35436242 0.45167785
## Yes 0.28551336 0.16596343 0.25035162 0.29817159
##
## $Sex
## Sex
## Survived Male Female
## No 0.91543624 0.08456376
## Yes 0.51617440 0.48382560
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##
## $Age
## Age
## Survived Child Adult
## No 0.03489933 0.96510067
## Yes 0.08016878 0.91983122

Which variables are more informative to predict survival?
## Class:
p_class <- nb_titanic$tables$Class
p_class["Yes",]/p_class["No",]

## 1st 2nd 3rd Crew
## 3.4870074 1.4807516 0.7064847 0.6601422
# Sex
p_sex <- nb_titanic$tables$Sex
p_sex["Yes",]/p_sex["No",]

## Male Female
## 0.5638562 5.7214297
# Age
p_age <- nb_titanic$tables$Age
p_age["Yes",]/p_age["No",]

## Child Adult
## 2.2971438 0.9530935

Exercise:
iris %>% ggplot(aes(x = Petal.Length, y = Petal.Width, colour = Species)) +

geom_point()
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• Use naiveBayes to classify the iris flowers into their three classes.
• What information does the $tables from the fit contain?
• Try to identify the most informative variables for predicting the classes.
• Are the assumptions about normality satisfied for each of xi | y?
• Can you visualise the decision boundaries in the Petal-plane (i.e x = Petal.Length, y =

Petal.Width)? Tip:* Create a grid (cf below), make the prediction for each* point in the grid and
plot this.

iris_petal_grid <- iris %>%
expand(

Petal.Length = seq(min(Petal.Length), max(Petal.Length), len = 100),
Petal.Width = seq(min(Petal.Width), max(Petal.Width), len = 100)

) %>%
mutate(Sepal.Length = NA, Sepal.Width = NA)

Support Vector Machines: SVM

See slides day-5-SVM.pdf for introduction to SVMs
iris_svm_linear <- svm(Species ~ ., data = iris, cost = 1, kerner = "linear")
iris_svm_linear

##
## Call:
## svm(formula = Species ~ ., data = iris, cost = 1, kerner = "linear")
##
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##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
## gamma: 0.25
##
## Number of Support Vectors: 51
summary(iris_svm_linear)

##
## Call:
## svm(formula = Species ~ ., data = iris, cost = 1, kerner = "linear")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
## gamma: 0.25
##
## Number of Support Vectors: 51
##
## ( 8 22 21 )
##
##
## Number of Classes: 3
##
## Levels:
## setosa versicolor virginica
plot(iris_svm_linear, formula = Petal.Length ~ Petal.Width, data = iris,

slice = list(Sepal.Width = 3, Sepal.Length = 4))

iris_svm_radial <- svm(Species ~ ., data = iris, cost = 1, kerner = "radial")
plot(iris_svm_radial, formula = Petal.Length ~ Petal.Width, data = iris,

slice = list(Sepal.Width = 3, Sepal.Length = 4))
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iris_svm_poly_3 <- svm(Species ~ ., data = iris, cost = 100, kerner = "polynomial", degree = 5)
plot(iris_svm_poly_3, formula = Petal.Length ~ Petal.Width, data = iris,

slice = list(Sepal.Width = 3, Sepal.Length = 4))
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Tuning

ncol_data <- ncol(iris)
iris_radial_tune <- tune.svm(Species ~ ., data = iris, kerner = "radial",

cost = 10^(0:3), gamma = 1/(ncol_data*c(0.5,1,2)))
plot(iris_radial_tune)
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summary(iris_radial_tune)

##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## gamma cost
## 0.2 1
##
## - best performance: 0.03333333
##
## - Detailed performance results:
## gamma cost error dispersion
## 1 0.4 1 0.04000000 0.04661373
## 2 0.2 1 0.03333333 0.04714045
## 3 0.1 1 0.03333333 0.04714045
## 4 0.4 10 0.04666667 0.05488484
## 5 0.2 10 0.03333333 0.04714045
## 6 0.1 10 0.03333333 0.04714045
## 7 0.4 100 0.07333333 0.07336700
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## 8 0.2 100 0.04666667 0.06324555
## 9 0.1 100 0.03333333 0.05665577
## 10 0.4 1000 0.07333333 0.07336700
## 11 0.2 1000 0.06666667 0.07027284
## 12 0.1 1000 0.06000000 0.05837300

Topics not covered

• ROC curves
– Used to decide on an optimal threshold value. That is, the threshold of 0.5 may not be optimal

• k-Nearest Neighbouhrs
– A ‘simple’ technique where a test sample is classified based by a majority vote among its k closest

data points in the training data
– This is called on online or lazy learner as it does not fit a model to data, but uses all the training

data for each new classification task.
– Typically cross-validation is used to decide on k

• Imbalanced training data case
– When samples of one type is much more dominant in the training data. One approach is to use

weights for methods that allows/incorporates this.
• Linear (LDA) and quadratic discriminant analysis (QDA)

– The predecessors of SVM
– Relies on an assumption of multivariate normality of the data (given the class)

• Ordinal classification
– Situations where the levels of Y has an ordering to them, e.g. low, mid and high
– See the ordinal package for regression methods to deal with this type of analysis.
– See the rpartOrdinal or rpartScore for extentions to rpart for classification trees with ordinal

responses.
– See glmnetcr for a glmnet like approach to ordinal response prediction
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