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CART:Classification And Regression Trees
Link: Introduction to rpart

https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
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CART: Regression

For regression the CART methodoloy fits a piecewise
constant prediction for each region Rj ,

ŶCART(x) =
R∑
j=1

βjI(x ∈ Rj),

where βj is the constant level for region Rj .

Hence, the expression for Ŷ can be determined if

a) the partition (i.e. the regions R1, . . . ,RR) are known

b) the estimated parameters βj are known

These are chosen such that they minimises the expected
squared loss for future observations (x , y),

E[(Y − Ŷ )2]
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CART: Classification

Assume that y ∈ {0, 1} and CART once again construcs a
piecewise constant function

ŶCART(x) =
R∑
j=1

βjI(x ∈ Rj),

where βj ∈ [0, 1]. Standard classification uses

YCART(x) =

{
0, hvis ŶCART ≤ 0.5

1, hvis ŶCART > 0.5

A good choice of ŶCART leads to a small mis-classification
rate, P(YCART(x) 6= y).
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Eksempel
Iris data – three species

> iris[c(1:2,51:52,101:102),]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

52 6.4 3.2 4.5 1.5 versicolor

101 6.3 3.3 6.0 2.5 virginica

102 5.8 2.7 5.1 1.9 virginica
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Eksempel
Iris data

We can classify the species in the Iris dataset using CART
classification.

library(rpart)

data(iris)

(cart.iris <- rpart(Species~.,data=iris))

n= 150

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 150 100 setosa (0.33 0.33 0.33)

2) Petal.Length< 2.45 50 0 setosa (1.00 0.00 0.00) *

3) Petal.Length>=2.45 100 50 versicolor (0.00 0.50 0.50)

6) Petal.Width< 1.75 54 5 versicolor (0.00 0.91 0.09) *

7) Petal.Width>=1.75 46 1 virginica (0.00 0.02 0.98) *
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Example
Iris data – Cont’d

Classification tree

Petal.Length < 2.5

Petal.Width < 1.8
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Parameter estimation

From the model

ŶCART(x) =
R∑
j=1

βjI(x ∈ Rj),

we have that when the partitions/regions Rj are given, the
MLE for βj is given by

β̂j =

∑n
i=1 yi I(xi ∈ Rj)∑n
i=1 I(xi ∈ Rj)

= ȳRj
.

where β̂j for regression just is the average of the ys with
x ∈ Rj and for classification the fraction of “y = 1”-samples.
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Partitioning

Ideally we wants a partitioning which given the smallest
expected loss (regression: sum of squares, classification: error
rate).

The number of partitions is to vast, why an exhautive search
is infeasible.

Hence, we use a greedy algorithm to search for partitions
with good splits.

Note! The r in rpart stands for recursive. Hence, what
applies to the root is used recursively down the tree.
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Method to generate splits

In the training data we have {(x1, y1), . . . , (xn, yn)}, where
xi = (xi1, . . . , xip) is p-dimensional.

For a numeric predictor vector x we search for the partition:

1. Start by R1 = Rp

2. Given R1, . . . ,Rr , split each Rj into Rj1 and Rj2 where

Rj1 = {x ∈ Rp : x ∈ Rj and xk ≤ c}
Rj2 = {x ∈ Rp : x ∈ Rj and xk > c},

and the variable xk with splitting points c is chosen such

arg min
k,c

min
β1,β2

 ∑
i :xi∈Rj1

(yi − β1)2 +
∑

i :xi∈Rj2

(yi − β2)2


Let R11 ,R12 , . . . ,Rr1 ,Rr2 be new partitions.

3. Repeat step 2. d times to get a tree of depth d .
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Model complexity

What size of tree is optimal?

We can grow the tree untill each observations has its own
leaf (terminal node). This gives an error rate of null, but not
very enlightning!.

Hence, stop before that, but when?



22

CART

Regression

Classification

Example

Estimation

Partitioning

11 Model complexity

Pruning

Surrogates

Torben Tvedebrink
tvede@math.aau.dk

Example
Pima indians

Female descendents from the Pima indians above 21 years of
age and living near Phonix, Arizona, was included in a study.
Each female was tested for diabetes according to WHO’s
criteria.

The variables in the data includes apart from diabetest
status (type), information on

I number of pregnancies (npreg),
I plasma glucose concentration (glu)
I blood pressure (bp),
I triceps skin fold thickness (mm) (skin),
I BMI (bmi),
I diabetes pedigree function (ped) and
I age (age).
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Two different trees
Pima indians – Cont’d

Default settings

glu < 124

age < 28

glu < 90

bp >= 68

ped < 0.31

glu < 166 bmi < 29

No
132  68

No
94  15

No
70  4

No
24  11

No
9  0

No
15  11

No
13  6

Yes
2  5

Yes
38  53

No
23  12

No
21  6

Yes
2  6

Yes
15  41

No
8  3

Yes
7  38

yes no

rpart.control(cp=0.11)

glu < 124

ped < 0.31

No
132  68

No
94  15

Yes
38  53

No
23  12

Yes
15  41

yes no
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Bias vs. variance

Why did I choose rpart.control(cp=0.11) in the analysis
of the Pima indians? This tuning parameter decides the size
of the tree (its complexity).

The larger the tree, the less bias but also a higher variance
for the test data. Conversely, smaller trees gives larger bias,
but little variance for test data.

In general, a bigger tree gives a better prediction for training
data. However, an increased model complexity may result in
a the model too specific for the training data (overfitting!),
which makes it less applicable for test data and prediction
for new data. It has a poor generalisation ability.
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Choosing the optimal tree
Tuning parameter α

We wants to search for the optimal tree T ∗, that minimises
the true test error, ErrorTest. This quantity is unknwon, but
may be approximated using cross-validation.

The estimate/approximation is used to identify T ∗, such that

T ∗ = arg min
T

ErrorTest(T )

This, however, would require an exhaustive search over all
possible trees T – which obviously is infeasible.

Using a tuning parameter α the problem can be translated
into a one-dimensional problem.
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Choosing the optimal tree
Tuning parameter α

We wants to search for the optimal tree T ∗, that minimises
the true test error, ErrorTest. This quantity is unknwon, but
may be approximated using cross-validation.

The estimate/approximation is used to identify T ∗, such that

T ∗ = arg min
T

ErrorTest(T )

This, however, would require an exhaustive search over all
possible trees T – which obviously is infeasible.

Using a tuning parameter α the problem can be translated
into a one-dimensional problem.
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Pruning

The tuning parameter α penalises large trees,

ErrorTrain(T ) + α|T |, (1)

where |T | is the number of leafs in the tree.

Two approaches:

I Grow the tree untill (1) increases.

I Grow a full tree and prune it untill (1) increases.
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Pruning

The tuning parameter α penalises large trees,

ErrorTrain(T ) + α|T |, (1)

where |T | is the number of leafs in the tree.

Two approaches:

I Grow the tree untill (1) increases.

I Grow a full tree and prune it untill (1) increases.



22

CART

Regression

Classification

Example

Estimation

Partitioning

Model complexity

16 Pruning

Surrogates

Torben Tvedebrink
tvede@math.aau.dk

Selecting α

What value of α should be used? Given α ∈ R+, let Tα be
the tree that minimises

Tα = arg min
T

ErrorTrain(T ) + α|T |

We wants α∗ such that the resulting tree has the minimal
test error

Tα∗ = arg min
Tα, α∈R+

ˆErrorTest(Tα),

where ˆErrorTest is the estimate of the test error.
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Selecting α
Cont’d

We may plot the generalisation error ˆErrorTest for the
optimal tree using the criterion

ErrorTrain(T ) + α|T |

as a function of α.

It holds that Tα is constant in intervals I1 = [0, α1],
I2 = (α1, α2], . . . , Im = (αm−1,∞]. Hence, all values α′ ∈ Ij
gives the same tree, i.e. αj , Tα′ ≡ Tαj

Note, T0 og T∞ are special cases – T0 receives no penalty
for its size (the full tree), T∞ gives the empty tree T∅.
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How in rpart

To decide on α, in rpart we use printcp or plotcp.

These functions use a rewritten version of the above:

Errorα(T )

Error∞(T )
=

Error(T ) + α|T |
Error(T∅)

=
Error(T )

Error(T∅)
+

α

Error(T∅)
|T |

= rel error + cp|T |,

where the error is relative to T∞ = T∅ – i.e. the ’total’
variance as we don’t have any splits in T∞

The variable cp is short for ’complexity parameter’.
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Choise of cp

There are (at least) two criteria to select α∗ that decides the
complexity of Tα∗ :

1. Choose cp where xerror (CV estimate of rel error)
is smallest,

2. Choose cp giving xerror within one standard deviation
of the smallest xerorr.

In the plotcp-plot the dotted line shows xerror+xstd

relative to the cp-value with smallest xerror.

Note! xerror and xstd changes with the CV and is
recomputed for each run of rpart.

In practice we use 2. since this gives the more parsimonious
model (and we consider models within one standard
deviation as equally good).
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Eksempel
Pima indians – Cont’d
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Eksempel
Pima indianere – Cont’d

set.seed(13454)

pima.cp <- rpart(type~.,data=Pima.tr,cp=0.012)

printcp(pima.cp)

Classification tree:

rpart(formula = type ~ ., data = Pima.tr, cp = 0.012)

Variables actually used in tree construction:

[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd

1 0.220588 0 1.00000 1.00000 0.098518

2 0.161765 1 0.77941 0.97059 0.097791

3 0.073529 2 0.61765 0.79412 0.092331

4 0.058824 3 0.54412 0.77941 0.091785

5 0.014706 4 0.48529 0.69118 0.088180

6 0.012000 7 0.44118 0.77941 0.091785
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Surrogates

A nice feature of the CART methodoloty are the so called
surrogates. These are variables in the data that are not
choosen as primary splitting variables, but assemples the
splitting properties of the primary split.

They are in particularly important when missing
observations exists in the primary split variables.
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