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library(tidyverse)
theme_set(theme_bw())

Generalisability of models

Let y = f(x) + ε we our model, where ε is a stochastic error with zero mean and variance σ2. Note, we don’t
assume anything about the distribution (e.g. not normality), only that the error is independent of f(x).

Hence, we know that
E[y] = E[f(x) + ε] = E[f(x)] + E[ε] = f(x)

.

We do not necessarily know the shape of f(x) - but we wants to learn it. We may not even know which part of
x = (x1, x2, . . . , xp) that affects y. We have just collected data on the phenomenon y and hope the systematic
components depends on the collected explanatory data, x.

Example: Linear models

We know that linear models are models where y = β0 + β1x1 + · · · + βpxp + ε. Or in other words,

y = f(x) + ε = Xβ + ε,

where ε ∼ N(0, σ2I)

Example: mtcars and polynomial regression

(mpg_hp_plot <- ggplot(mtcars, aes(y = mpg, x = hp)) + geom_point())
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(mpg_hp_plot <- mpg_hp_plot + geom_smooth(method = "lm", formula = y ~ x))
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(mpg_hp_plot <- mpg_hp_plot + geom_smooth(method = "lm", formula = y ~ x + I(x^2), colour = "red"))
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(mpg_hp_plot <- mpg_hp_plot + geom_smooth(method = "lm", formula = y ~ x + I(x^2) + I(x^3), colour = "green"))
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How many powers of hp is needed for a good fit?

What is a good fit? How is it measured?

The root mean squared error (RMSE) is one measure:

RMSE =

√√√√ 1
n

n∑

i=1
(yi − ŷi)2 =

√√√√ 1
n

n∑

i=1
r2

i

, where ŷi = f̂(xi) and ri is the i’th residual.
rmse <- function(lm_obj){

sqrt(mean(residuals(lm_obj)^2))
}

How does this perform?
rmse(lm(mpg ~ hp, data = mtcars))

[1] 3.740297
rmse(lm(mpg ~ poly(hp, 2), data = mtcars))

[1] 2.929546
rmse(lm(mpg ~ poly(hp, 3), data = mtcars))

[1] 2.902615
rmse(lm(mpg ~ poly(hp, 4), data = mtcars))
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Figure 1: 10-fold cross validation

[1] 2.902144
# and it goes on

How well does my model generalise? The above property only holds when test and traning data are the same.

Test and traning data

We can split the data into test and traning data - however, a single split only gives us a single estimate of the
generalisation error. The solution is to do this K times, by using K-fold cross validation

K-fold cross-validation

We divide the data into K equal sized chunks - the first K − 1 serves as training and the last as test. We
permute the role as test data K times (each time the training is the non-test data).
K <- 10
mtcars$cv_fold <- sample(K, size = nrow(mtcars), replace = TRUE)
head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
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cv_fold
Mazda RX4 3
Mazda RX4 Wag 4
Datsun 710 10
Hornet 4 Drive 10
Hornet Sportabout 4
Valiant 3
cv_rmse <- function(power, K = 10){

mtcars$pred <- NA
for(k in 1:K){

train_lm <- lm(mpg ~ poly(hp, degree = power), data = subset(mtcars, cv_fold != k))
mtcars$pred[mtcars$cv_fold == k] <- predict(train_lm, newdata = subset(mtcars, cv_fold == k))

}
sqrt(mean((mtcars$mpg - mtcars$pred)^2))

}

So what happens when we run this?
cv_rmse(power = 1)

[1] 4.219946
cv_rmse(power = 2)

[1] 3.010637
cv_rmse(power = 3)

[1] 3.210855
cv_rmse(power = 4)

[1] 9.178502
cv_rmse(power = 5)

[1] 59.95637

We see that the cross-validated RMSE starts to increase after power = 2 or power = 3, suggesting that we
start to overfit to the traning data.

CV is very powerful

No matter the type of model f we are fitting to data, we can always do cross-validation. For some model
types it is not possible to do hypothesis tests with the usual distributional assumptions as for lm, hence we
can utilise CV for the same type of questions..
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Variance-bias trade-off

The Root Mean Squared Error (RMSE) is a measure on the same scale of as the response of our model. The
MSE (Mean Squared Error) also often used to assess the model performance.

When we discuss the generalisation of models, we consider what happens on new unseen dataset – that
is conceptual data. To quantify what we mean by that, we look at the expected MSE, E(MSE), where
expectation is with respect to the average MSE when f is fitted on a large number of datasets.

Again, let y = f(x) + ε as before. The σ2 is an irreducible error that we can’t get rid of - it is simply the
nature of the phenomenon we model. However, we can attempt to learn f .

We let ŷ0 = f̂(x0), where x0 is some instance of the explanatory variables and y0 is the observed response
with estimate ŷ0. When,

E[{y0 − f̂(x0)}2] = V ar[f̂(x0)] + [Bias{f̂(x0)}]2 + V ar(ε)

In order to minimize the expected test error, we need to select a statistical learning method that simultaneously
achieves low variance and low bias. Note that variance is inherently a nonnegative quantity, and squared bias
is also onnegative. Hence, we see that the expected test MSE can never lie below σ2, the irreducible error.

Examples

Three different situations. The data is generated from the black curves. The fitted functions (orange: lm,
blue: low-degree spline, and green: higher-order spline) has varying flexibility (degrees of freedom).
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Pay a little bias to get a reduction in variance?

Why use an unbiased estimator when we have an unbiased one from OLS? One reason is that the estimator
has a lower variance. Hence, by introducing a little bias, we are able to reduce the variance of the estimated
coefficients.
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glmnet: Elastic net – Penalised regression methods
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Introduction and (one) motivation

In analysis of high-dimensional data, we often face the situation of having more predictors, p, than observations,
n, i.e n < p. This often the case in genomics, where the number of genetic markers by far exceeds the number
of samples. We denote X the n× (p)-design matrix.

For the ordinary least squares this causes a problem, as β̂ols = (X>X)−1X>y implies that (X>X) needs to
be invertible, i.e. X needs to have full rank, which it does not when n < p.

Ridge regression

One way to deal with this is to add a full-rank matrix, λIp to X>X, where Ip is the identity matrix. The
constant λ ≥ 0 is a tuning parameter, that needs to be specified, e.g. by cross-validation.

A little more maths show that in fact we have

β̂ridge = (X>X + λIp)−1X>y,

implying that β̂ridge = β̂ols for λ = 0.

One property that is relevant to discuss is bias and variance of the estimators in OLS and Ridge Regression.
Hence, let us recall that β̂ols is unbiased:

E(β̂ols) = E{(X>X)−1X>y}
= (X>X)−1X>E{y}
= (X>X)−1X>Xβ

= β,

where we used that y ∼ (Xβ, σ2In) by assumption.

Bias

We could repeat this argument for β̂ridge, however it is more instructive to rewrite β̂ridge in terms of β̂ols:

β̂ridge = [X>X + λIp]−1X>y

= [(X>X){Ip + λ(X>X)−1}]−1X>y

= {Ip + λ(X>X)−1}−1(X>X)−1X>y

= {Ip + λ(X>X)−1}−1β̂ols,

where we assumed that X>X is invertible.

From this we find that E(β̂ridge) = {Ip + λ(X>X)−1}−1β, i.e. an biased estimator when λ > 0.
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Figure 1: Ridge regression and OLS solutions. The intersection between the ellipsoid contour lines and the
disc represents the Ridge solution relative to the OLS solution

However, we can also give a direct calculation of the variance for Ridge Regression and OLS, showing that

trace(V[β̂ols]) = σ2
p∑

j=1

1
d2
j

trace(V[β̂ridge]) = σ2
p∑

j=1

d2
j

(λ+ d2
j )2 ,

where dj is proportional to the sample variance in the j’th principal component.

A different view on Ridge Regression

One can also look at Ridge Regression differently, namely in terms of penalised regression, where a penalty
term is applied to the squared sum of coefficient estimates:

β̂ridge = arg min
β
‖y −Xβ‖2

2 subject to‖β‖2
2 ≤ t,

for some positive constant t and ‖x‖2
2 =

∑p
j=1 x

2
j is the `2-norm.

We can think of t as a “budget” for the regression, as we have to “spend” the regression parameter budget on
the variables best explaining y from X. For this reason the data is also scaled before fitting to have zero
mean and variance one (per column - glmnet does that automatically).

Using some Lagrange multipliers we can show that this is equivalent to

β̂ridge = arg min
β
‖y −Xβ‖2

2 + λ‖β‖2
2,

where λ is the same constant as before and determined through cross-validation.

Relationship between solutions to OLS and Ridge Regression

We can try to inspect the solutions graphically in two dimensions

The Lasso Regression

In the figure above we saw that the Ridge Regression contracts the solution, β̂ridge, towards the disc defined
by the “budget”-parameter t. As a disc/sphere don’t have pointy edges, is it rarely the case that any of the
parameters in β̂ridge are set to zero.
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Figure 2: Lasso regression and OLS solutions. The intersection between the ellipsoid contour lines and the
square represents the Lasso solution relative to the OLS solution.

In the linear inference that Søren talked about yesterday, the elimination of insignificant terms is important.
Typically we do so by successive removing terms from the model – either by some information criterion or
hypothesis tests (for nested linear models).

However, the Lasso Regression makes variable selection while estimating the parameters. This is done by
solving

β̂lasso = arg min
β
‖y −Xβ‖2

2 + λ‖β‖1,

where the penalty is the `1 norm, ‖x‖1 =
∑p
j=1 |xj |, i.e. the sum of the absolute values.

The Lasso penalty generally sets more parameter values to zero than the Ridge Regression, where we seldom
see any terms fixed to zero.

It is not as easy to express bias and variance for the Lasso since we generally don’t have closed forms solutions
to the likelihood equations. However, the general picture is that the larger λ, the more bias and consequently
lower variance.

As for the Ridge Regression we can visualise the Lasso solution together with the OLS solution for two
dimensions. Since, the Lasso penalty can be viewed as

p∑

j=1
|βj | ≤ t,

we have a 45◦-rotated square centered in origo where the Lasso solution exists.

A hand-waving argument for more sparse solutions comes from the intuition that it is more likely that the
corners of the hyper-cube will intersect the ellipsoid. Corners result in one or more zero-parameters.

The Baysian perspective

In Bayesian statistics, we think of the data as fixed and the parameters being random. This is different from
the frequentistic approach, where we think of the parameters having some true value.

In the Bayesian context, the Ridge Regression results from assigning a normal distributed prior on each
component in the β-vector, with zero mean and some variance, τ2. This implies that we a priori assumes
many of the parameters to be close to zero.

The Lasso also assigns a zero-mean distribution, but with a Laplacian distribution that decays more rapidly
towards zero implying that less terms are expected to be non-zero.
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Figure 3: Ridge regession and LASSO - soft thresholding

Figure 4: Lasso, Ridge and Elastic Net regularisation. Source: Wikipedia

Elastic Net – the best from two worlds?

A downside with the Lasso is that it may have difficulties when several variables are collinear, such that linear
combinations of them are hard to distinguish. In such a case the Ridge Regression is better as it will typically
form an average of the variables. Hence, for stable selection of variables in this case Ridge Regression may be
preferred. However, Ridge Regression seldom sets any parameters to zero, i.e. no variable selection which is
what we would like in the end. . .

The solution to the problem is Elastic Net, which incorporates both the `1 (Lasso) and `2 (Ridge) penalties
in a convex way:

β̂en = arg min
β
‖y −Xβ‖2

2 + λ

(
α‖β‖1 + 1− α

2 ‖β‖2
2

)
,

where α is yet another tuning parameter deciding the amount of Lasso (α = 1) and Ridge (α = 0) penalty
that goes into the solution.

Both α and λ are selected based on cross-validation.

In the Figure below we see the three types of regularisation discussed above. The shape of the Elastic Net
solution area depends on α - the closer to 1 the more square it is, and the closer to 0 the more spherical.
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Further reading:

https://web.stanford.edu/~hastie/StatLearnSparsity/
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glmnet in R
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Load glmnet to make the functionalities available.
library(glmnetUtils)
library(tidyverse)

Ressources on glmnet

• The package vignette vignette("glmnet_beta") is highly recommendable.
• Many questions have already been asked and answered at https://stackoverflow.com/questions/tagged/

glmnet.

Example

crime <- read_csv("crime.csv", col_types = cols())

Note: Due to different scales of the variables, the estimated parameters may be different in size simply due
to different units. Hence, The glmnet function automatically standardises both the response (for family =
"gaussian") y and the covariates x.
crime_lasso <- glmnet(`crime rate` ~ ., alpha = 1, data = crime) ## alpha = 1: LASSO
plot(crime_lasso)
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library(plotmo) # for plot_glmnet # install.packages("plotmo")
plot_glmnet(crime_lasso, xvar = "norm")
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crime_ridge <- glmnet(`crime rate` ~ ., alpha = 0, data = crime) ## alpha = 0: Ridge Regression
plot(crime_ridge)
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plot_glmnet(crime_ridge, xvar = "norm")
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What should λ be?

cv_glmnet_lasso <- cv.glmnet(`crime rate` ~ ., alpha = 1, data = crime)
plot(cv_glmnet_lasso)
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cv_glmnet_ridge <- cv.glmnet(`crime rate` ~ ., alpha = 0, data = crime) ## alpha = 0: Ridge
plot(cv_glmnet_ridge)
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Elastic net approach: What should α be?

cv_glmnet_enet <- cva.glmnet(`crime rate` ~ ., data = crime)

plot(cv_glmnet_enet)
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minlossplot(cv_glmnet_enet)
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Other types of regression

There are many different types of regressions one would be interested in:

• Logistic regression (binary outcomes): family = "binomial"
• Count regression (Poisson distribution): family = "poisson"
• Multiclass (multinomial data): family = "multinomial"
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• Survival analysis (Cox proportional hazard model): family = "cox"
• Multivariate normal (multivariate Gaussian): family = "mgaussian"
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CART: Regression

For regression the CART methodoloy fits a piecewise
constant prediction for each region Rj ,

ŶCART(x) =
R∑

j=1

βjI(x ∈ Rj),

where βj is the constant level for region Rj .

Hence, the expression for Ŷ can be determined if

a) the partition (i.e. the regions R1, . . . ,RR) are known

b) the estimated parameters βj are known

These are chosen such that they minimises the expected
squared loss for future observations (x , y),

E[(Y − Ŷ )2]
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CART: Classification

Assume that y ∈ {0, 1} and CART once again construcs a
piecewise constant function

ŶCART(x) =
R∑

j=1

βjI(x ∈ Rj),

where βj ∈ [0, 1]. Standard classification uses

YCART(x) =

{
0, hvis ŶCART ≤ 0.5

1, hvis ŶCART > 0.5

A good choice of ŶCART leads to a small mis-classification
rate, P(YCART(x) 6= y).
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Eksempel
Iris data – three species

> iris[c(1:2,51:52,101:102),]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

52 6.4 3.2 4.5 1.5 versicolor

101 6.3 3.3 6.0 2.5 virginica

102 5.8 2.7 5.1 1.9 virginica
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Eksempel
Iris data

We can classify the species in the Iris dataset using CART
classification.

library(rpart)

data(iris)

(cart.iris <- rpart(Species~.,data=iris))

n= 150

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 150 100 setosa (0.33 0.33 0.33)

2) Petal.Length< 2.45 50 0 setosa (1.00 0.00 0.00) *

3) Petal.Length>=2.45 100 50 versicolor (0.00 0.50 0.50)

6) Petal.Width< 1.75 54 5 versicolor (0.00 0.91 0.09) *

7) Petal.Width>=1.75 46 1 virginica (0.00 0.02 0.98) *
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Example
Iris data – Cont’d

Classification tree

Petal.Length < 2.5

Petal.Width < 1.8

setosa
50  50  50

setosa
50  0  0

versicolor
0  50  50

versicolor
0  49  5

virginica
0  1  45

yes no

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Induced regions

Petal.Length
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setosa
versicolor
virginica
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Parameter estimation

From the model

ŶCART(x) =
R∑

j=1

βjI(x ∈ Rj),

we have that when the partitions/regions Rj are given, the
MLE for βj is given by

β̂j =

∑n
i=1 yi I(xi ∈ Rj)∑n
i=1 I(xi ∈ Rj)

= ȳRj
.

where β̂j for regression just is the average of the ys with
x ∈ Rj and for classification the fraction of “y = 1”-samples.
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Partitioning

Ideally we wants a partitioning which given the smallest
expected loss (regression: sum of squares, classification: error
rate).

The number of partitions is to vast, why an exhautive search
is infeasible.

Hence, we use a greedy algorithm to search for partitions
with good splits.

Note! The r in rpart stands for recursive. Hence, what
applies to the root is used recursively down the tree.
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Method to generate splits

In the training data we have {(x1, y1), . . . , (xn, yn)}, where
xi = (xi1, . . . , xip) is p-dimensional.

For a numeric predictor vector x we search for the partition:

1. Start by R1 = Rp

2. Given R1, . . . ,Rr , split each Rj into Rj1 and Rj2 where

Rj1 = {x ∈ Rp : x ∈ Rj and xk ≤ c}
Rj2 = {x ∈ Rp : x ∈ Rj and xk > c},

and the variable xk with splitting points c is chosen such

arg min
k,c

min
β1,β2


 ∑

i :xi∈Rj1

(yi − β1)2 +
∑

i :xi∈Rj2

(yi − β2)2




Let R11 ,R12 , . . . ,Rr1 ,Rr2 be new partitions.

3. Repeat step 2. d times to get a tree of depth d .
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Model complexity

What size of tree is optimal?

We can grow the tree untill each observations has its own
leaf (terminal node). This gives an error rate of null, but not
very enlightning!.

Hence, stop before that, but when?
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Example
Pima indians

Female descendents from the Pima indians above 21 years of
age and living near Phonix, Arizona, was included in a study.
Each female was tested for diabetes according to WHO’s
criteria.

The variables in the data includes apart from diabetest
status (type), information on

I number of pregnancies (npreg),
I plasma glucose concentration (glu)
I blood pressure (bp),
I triceps skin fold thickness (mm) (skin),
I BMI (bmi),
I diabetes pedigree function (ped) and
I age (age).
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Two different trees
Pima indians – Cont’d

Default settings

glu < 124

age < 28

glu < 90

bp >= 68

ped < 0.31

glu < 166 bmi < 29

No
132  68

No
94  15

No
70  4

No
24  11

No
9  0

No
15  11

No
13  6

Yes
2  5

Yes
38  53

No
23  12

No
21  6

Yes
2  6

Yes
15  41

No
8  3

Yes
7  38

yes no

rpart.control(cp=0.11)

glu < 124

ped < 0.31

No
132  68

No
94  15

Yes
38  53

No
23  12

Yes
15  41

yes no
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Bias vs. variance

Why did I choose rpart.control(cp=0.11) in the analysis
of the Pima indians? This tuning parameter decides the size
of the tree (its complexity).

The larger the tree, the less bias but also a higher variance
for the test data. Conversely, smaller trees gives larger bias,
but little variance for test data.

In general, a bigger tree gives a better prediction for training
data. However, an increased model complexity may result in
a the model too specific for the training data (overfitting!),
which makes it less applicable for test data and prediction
for new data. It has a poor generalisation ability.
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Choosing the optimal tree
Tuning parameter α

We wants to search for the optimal tree T ∗, that minimises
the true test error, ErrorTest. This quantity is unknwon, but
may be approximated using cross-validation.

The estimate/approximation is used to identify T ∗, such that

T ∗ = arg min
T

ErrorTest(T )

This, however, would require an exhaustive search over all
possible trees T – which obviously is infeasible.

Using a tuning parameter α the problem can be translated
into a one-dimensional problem.
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Pruning

The tuning parameter α penalises large trees,

ErrorTrain(T ) + α|T |, (1)

where |T | is the number of leafs in the tree.

Two approaches:

I Grow the tree untill (1) increases.

I Grow a full tree and prune it untill (1) increases.
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Selecting α

What value of α should be used? Given α ∈ R+, let Tα be
the tree that minimises

Tα = arg min
T

ErrorTrain(T ) + α|T |

We wants α∗ such that the resulting tree has the minimal
test error

Tα∗ = arg min
Tα, α∈R+

ˆErrorTest(Tα),

where ˆErrorTest is the estimate of the test error.
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Selecting α
Cont’d

We may plot the generalisation error ˆErrorTest for the
optimal tree using the criterion

ErrorTrain(T ) + α|T |

as a function of α.

It holds that Tα is constant in intervals I1 = [0, α1],
I2 = (α1, α2], . . . , Im = (αm−1,∞]. Hence, all values α′ ∈ Ij
gives the same tree, i.e. αj , Tα′ ≡ Tαj

Note, T0 og T∞ are special cases – T0 receives no penalty
for its size (the full tree), T∞ gives the empty tree T∅.
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How in rpart

To decide on α, in rpart we use printcp or plotcp.

These functions use a rewritten version of the above:

Errorα(T )

Error∞(T )
=

Error(T ) + α|T |
Error(T∅)

=
Error(T )

Error(T∅)
+

α

Error(T∅)
|T |

= rel error + cp|T |,

where the error is relative to T∞ = T∅ – i.e. the ’total’
variance as we don’t have any splits in T∞

The variable cp is short for ’complexity parameter’.
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Choise of cp

There are (at least) two criteria to select α∗ that decides the
complexity of Tα∗ :

1. Choose cp where xerror (CV estimate of rel error)
is smallest,

2. Choose cp giving xerror within one standard deviation
of the smallest xerorr.

In the plotcp-plot the dotted line shows xerror+xstd

relative to the cp-value with smallest xerror.

Note! xerror and xstd changes with the CV and is
recomputed for each run of rpart.

In practice we use 2. since this gives the more parsimonious
model (and we consider models within one standard
deviation as equally good).
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Eksempel
Pima indians – Cont’d
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Eksempel
Pima indianere – Cont’d

set.seed(13454)

pima.cp <- rpart(type~.,data=Pima.tr,cp=0.012)

printcp(pima.cp)

Classification tree:

rpart(formula = type ~ ., data = Pima.tr, cp = 0.012)

Variables actually used in tree construction:

[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd

1 0.220588 0 1.00000 1.00000 0.098518

2 0.161765 1 0.77941 0.97059 0.097791

3 0.073529 2 0.61765 0.79412 0.092331

4 0.058824 3 0.54412 0.77941 0.091785

5 0.014706 4 0.48529 0.69118 0.088180

6 0.012000 7 0.44118 0.77941 0.091785
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Surrogates

A nice feature of the CART methodoloty are the so called
surrogates. These are variables in the data that are not
choosen as primary splitting variables, but assemples the
splitting properties of the primary split.

They are in particularly important when missing
observations exists in the primary split variables.
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library(rpart)
library(rpart.plot)
set.seed(123)

The data on the Pima indians can be found in the MASS package
data(Pima.tr, package = "MASS")
head(Pima.tr)

## npreg glu bp skin bmi ped age type
## 1 5 86 68 28 30.2 0.364 24 No
## 2 7 195 70 33 25.1 0.163 55 Yes
## 3 5 77 82 41 35.8 0.156 35 No
## 4 0 165 76 43 47.9 0.259 26 No
## 5 0 107 60 25 26.4 0.133 23 No
## 6 5 97 76 27 35.6 0.378 52 Yes

Fit the a rpart model by default settings
pima_rp1 <- rpart(type ~ ., data = Pima.tr)

Look at the cp complexity parameter
plotcp(pima_rp1)
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Looking for plateau effect

set.seed(2018)
pima_rp2 <- rpart(type~.,data=Pima.tr,cp=0)
plotcp(pima_rp2)
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pima_rp2_pruned <- prune(pima_rp2, cp = 0.11)

Plot the trees

par(mfrow=c(1,2))
rpart.plot(pima_rp1, main="Default settings",

xcompact=FALSE, ycompact=FALSE, type=2, extra=1)

rpart.plot(pima_rp2_pruned, main="rpart.control(cp=0.11)",
xcompact=FALSE, ycompact=FALSE, type=2, extra=1)
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Default settings

glu < 124

age < 29

glu < 90

bp >= 68

ped < 0.31

glu < 166 bmi < 29

No
132  68

No
94  15

No
70  4

No
24  11

No
9  0

No
15  11

No
13  6

Yes
2  5

Yes
38  53

No
23  12

No
21  6

Yes
2  6

Yes
15  41

No
8  3

Yes
7  38

yes no

rpart.control(cp=0.11)

glu < 124

ped < 0.31

No
132  68

No
94  15

Yes
38  53

No
23  12

Yes
15  41

yes no
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