We consider
library(ggplot2)
age <- c(23, 28, 38, 44, 50, 53, 57, 59, 60)
fatpct <- c(19.2, 16.6, 32.5, 29.1, 32.8, 42, 32, 34.6, 40.5)
Various subsettings on vectors
qplot(age, fatpct)
age2 <- age[c(5,6,7,8,9)]
age2
## [1] 50 53 57 59 60
age2 <- age[age >= 50]
fatpct2 <- fatpct[age >= 50]
fatpct2
## [1] 32.8 42.0 32.0 34.6 40.5
age2 <- age[age >= 50 & age <= 55]
age2
## [1] 50 53
age2 <- age[!(age >= 50)]
age2
## [1] 23 28 38 44
agefat <- data.frame(a=age, f=fatpct)
agefat
## a f
## 1 23 19.2
## 2 28 16.6
## 3 38 32.5
## 4 44 29.1
## 5 50 32.8
## 6 53 42.0
## 7 57 32.0
## 8 59 34.6
## 9 60 40.5
agefat[1:5, ]
## a f
## 1 23 19.2
## 2 28 16.6
## 3 38 32.5
## 4 44 29.1
## 5 50 32.8
Where to find data
cars
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
## 7 10 18
## 8 10 26
## 9 10 34
## 10 11 17
## 11 11 28
## 12 12 14
## 13 12 20
## 14 12 24
## 15 12 28
## 16 13 26
## 17 13 34
## 18 13 34
## 19 13 46
## 20 14 26
## 21 14 36
## 22 14 60
## 23 14 80
## 24 15 20
## 25 15 26
## 26 15 54
## 27 16 32
## 28 16 40
## 29 17 32
## 30 17 40
## 31 17 50
## 32 18 42
## 33 18 56
## 34 18 76
## 35 18 84
## 36 19 36
## 37 19 46
## 38 19 68
## 39 20 32
## 40 20 48
## 41 20 52
## 42 20 56
## 43 20 64
## 44 22 66
## 45 23 54
## 46 24 70
## 47 24 92
## 48 24 93
## 49 24 120
## 50 25 85
qplot(speed, dist, data=cars)
speed <- cars$speed
dist <- cars$dist
qplot(speed, dist)
rm(speed, dist)
with(cars, qplot(speed, dist))