Module 9: Solutions

Exercise 1: Minimise auto-correlation

Write a function in R that uses a Metropolis-Hastings algorithm to simulate from a standard normal
distribution, using normally distributed proposals centred at the current value (in other words, this is a
random walk Metropolis algorithm). Make sure your code allows you to adjust the standard deviation of the
proposal distribution and monitor the acceptance probability. (Hint: You already implemented this in the
exercises for module 7 (see the solution if you didn’t finish the exercise) and you may use this as the main
part of your function). The skeleton of such a function is given below:

library(coda)
myMH <- function(N, sigma){
x <- rep(0, N) # Empty Markov chain
a <- 0 # Number of accepted proposals
Below implement the M-H alg. and add 1 to “a’ every time you accept
x[1] <- O ## initial value
for(i in 2:N){
y <- rnorm(1l, x[i-1], sigma)
u <- runif(1)
H <- dnorm(y)/dnorm(x[i-1])

if (u<H) {
x[i] <~y
a <- a+1
Yelsed{
x[i] <- x[i-1]
}
}

Finally return a list of the results
return(list(x=mcmc(x), a=a/(N-1)))
}
A short run with proposal std. dev. 1
rslt <- myMH(10000, 1)

To plot the auto-correlation function use the function acf() in R. To approximately calculate V =1 +
2% >, pm use the following command in R:

V <- 2 * sum(acf(rslt$x, plot = FALSE)$acf) - 1

Make some experiments and find the standard deviation for the proposal distribution that gives the smallest
value of V. What is the acceptance probability in this case? (Make sure that you have run the MH-algorithm
long enough (really long), so that the auto-correlation function is well estimated.)

sigma <- seq(l, 5, by = .5)
V <- rep(0, length(sigma))
a <- rep(0, length(sigma))
for(i in 1:length(sigma)){
rslt <- myMH(100000, sigmal[i])
x <- rslt$x
acf_val <- acf(x, plot = FALSE)$act
V[i] <- 2 * sum(acf_val) - 1

al[i] <- rslt$a
}
plot(sigma, V, type = "1")

sigma

a[which.min(V)]

[1] 0.4297643

Exercise 2: Beetles

This example is concerned with different beetles exposed in 5 hours to different concentrations of carbon
disulphide. The data contains for 481 beetles, in the first column, the concentration, and in the second
column, the status of the beetles after the exposure. The status is coded as zeros (dead beetles) and ones
(survived beetles). Read in the data set beetles.dat from the course website:

data_url <- "https://asta.math.aau.dk/course/bayes/2021/7file=beetles.dat"
beetles <- read.table(data_url)

Let x; > 0 and y; € {0,1} denote the concentration and status for the ith beetle, respectively. We use a
logistic regression model for the data of survived and dead beetles, i.e., we condition on the concentrations
and assume that the probability that the ¢th beetle survives its given dose z; is

exp(a + bx;)
1+ exp(a + bz;)

where a and b are real parameters. In R you can define the data vecors and log-likelihood function as:
beet_x <- beetles[,1]

beet_y <- beetles[,2]
11ik = function(a, b){

BEWARE: We refer to global variables beet_x and beet_y here!
return(sum(beet_y*(atb*beet_x)) - sum(log(l+exp(atb*beet_x))))
b

Now, let Cauchy(y) denote the symmetric Cauchy distribution with scale parameter v > 0; this distribution
has density
I v

g cR.
T2 4 2 ¢

m(cly) =
Assume a priori that a ~ Cauchy(10) and b ~ Cauchy(2.5) are independent (the argument for using this
prior is given in a 2008 paper by Andrew Gelman and coauthors in Annals of Applied Statistics). Then
construct a Metropolis-Hastings algorithm which generates a sample from the posterior distribution of (a,).

Hint: You have to work with the logarithm of the Hastings ratio for numerical stability. The logarithm of
the prior density can be calculated as

lprior <- function(a, b){
dcauchy(a, scale = 10, log = TRUE) + dcauchy(b, scale = 2.5, log = TRUE)
}

lposterior <- function(a, b){
11ik(a, b) + lprior(a, b)
}
myMH2 <- function(N, sigma = c(1,1), a0=1, b0=1){
a <- b <- rep(0, N) # Empty Markov chain
al[1] <- a0 ## initial value
b[1] <- b0 ## initial value
for(i in 2:N){
a_new <- rnorm(1l, ali-1], sigmal[1])
b_new <- rnorm(1, b[i-1], sigmal[2])
logH <- lposterior(a_new, b_new) - lposterior(ali-1], b[i-1])
if (log(runif (1))<logH){
a[i] <- a_new
b[i] <- b_new
Yelseq{
ali] <- ali-1]
b[i] <- bli-1]
}
I
Finally return the results
return(mcmc(cbind(a,b)))
}
Try tt out:
chain <- myMH2(100000, sigma = c(4,4), a0 = 60, b0 = -30)

chain <- window(chain, start = 1000)
summary (chain)
##

Iterations = 1000:1e+05

Thinning interval = 1

Number of chains =1

Sample size per chain = 99001

##

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

#it

Mean SD Naive SE Time-series SE
a 58.98 4.923 0.015647 0.3699
b -33.29 2.765 0.008788 0.2079
##

2. Quantiles for each variable:

#it

2.5% 25% 50% 75% 97.5%

a 49.40 b55.37 58.95 62.59 68.37
b -38.59 -35.26 -33.27 -31.25 -27.93

plot(chain)
Trace of a Density of a
— (o]
i S 4
o _] o
8 _
- o -
o _| 1 _ _
N T T T T T 3 T L T T 1
0e+00 4e+04 8e+04 45 50 55 60 65 70 75
Iterations N =99001 Bandwidth =0.5229
Trace of b Density of b
B - g
I o -
o _
F s 1 i
T T T T T T = T | | T
0e+00 4e+04 8e+04 -40 -35 -30 =25
Iterations N =99001 Bandwidth =0.2937

Let us plot the data (with the dose (z) values spread out a bit, so all the measurements aren’t on top of each
other) and overlay the fitted probability of survival for the posterior medians of the parameters (rounded to
a =58, b= —33):

plot(jitter(beet_x), beet_y, xlim = c(1.65, 1.9))
f <- function(x,a,b){ exp(atb*x)/(1+exp(a+b*x))}
curve(f(x, a = 58, b = -33), add = TRUE, col = 2)

Si_ - == - aDn a» a» o
Q |
o
©
> oS
Zl
]
o <
o
N
o
g —) G aGP aG» G

I I I I I I
1.65 1.70 1.75 1.80 1.85 1.90

jitter(beet_x)
Also we can add the observed survival fractions in percent:

tab <- table(beetles)

X <- as.numeric(rownames(tab))

y <- round(100*tab[,2]/rowSums(tab))
plot(jitter(beet_x), beet_y, xlim = c(1.65, 1.9))
curve(f(x, a = 58, b = -33), add = TRUE, col = 2)
points(x, y/100, cex = 2, pch = 3, col = 4)
text(x, y/100, labels = paste(y, "%"), pos = 2)

Cj_ (] -) ¢ (01 ®)

0.8

beet vy
0.4

0.2

g — @D QD [) - e

I I I I I I
1.65 1.70 1.75 1.80 1.85 1.90

jitter(beet_x)

Exercise 3: The banana

Construct a Metropolis-Hastings algorithm which has the following (unnormalised) invariant two-dimensional
density
m(z,y) oc exp(—2?/200 — (y + 0.1 % 2% — 10)?) z,y € R.

Notice that 7(z,y) is symmetric in 2. Do your simulations reproduce this symmetry?

1f <- function(x, y){
-x"2/200 - (y + 0.1%x"2 - 10)~2
}
myMH3 <- function(N, sigma = c(1,1), x0=0, y0=0){
X <- y <- rep(0, N) # Empty Markov chain
x[1] <- x0 ## initial value
y[1] <- yO ## initial value
for(i in 2:N){
x_new <- rnorm(1l, x[i-1], sigma[1])
y_new <- rnorm(1l, y[i-1], sigmal[2])
logH <- 1f(x_new, y_new) - 1f(x[i-1], y[i-11)
if (log(runif (1))<logH){
x[i] <- x_new
y[i] <= y_new
Yelsed{
x[i] <- x[i-1]
y[il <- yl[i-1]
}
}
Finally return a list of the results
return(cbind(x,y))
}
Try 1t out:
library(coda)
chain <- myMH3(10000, sigma = c(2,2), x0 = 0, yO = 0)
plot(chain[,1], chain[,2], ylim = c(min(chain[,2]), 20), col = rgb(0,0,0,.1))
xx <- seq(-20, 20, by=.5)
yy <- seq(-10, 20, by=.5)
contour(xx, yy, outer(xx, yy, 1f), levels = seq(-50, 0, by = 10), add = TRUE, col = 2)

chain[, 1]

I
-10

=20

0¢

_
0¢-

[z ‘Jureyd

	Exercise 1: Minimise auto-correlation
	Exercise 2: Beetles
	Exercise 3: The banana

