Solutions for module 1
 Basics of probability theory

Exercise 1

1. Ω is the set of all sequences of length n where each element is either a H (head) or T (tail) (e.g. HHTHTTTH if $n=8$). That the coin is fair means that there is the same probability for observing H or T in a coin toss. Assuming that the n coin tosses are independent, P is specified by that $P(x)=2^{-n}$ for any $x \in \Omega$. In other words, P is the uniform distribution on Ω.
2. Since

$$
A^{c}=\{H H \ldots H, T T \ldots T\}
$$

$P(A)=1-2 \times 2^{-n}$. The event

$$
B=\{H H \ldots H, T H \ldots H, H T H \ldots H, \ldots, H H \ldots H T\}
$$

consists of $n+1$ states (or elements), so $P(B)=(n+1) \times 2^{-n}$. Finally,

$$
A \cap B=\{T H \ldots H, H T H \ldots H, \ldots, H H \ldots H T\}
$$

consists of n states, so $P(A \cap B)=n \times 2^{-n}$.
3. Since

$$
P(A) \times P(B)=(n+1)\left(1-2^{1-n}\right) 2^{-n}
$$

we obtain (the somewhat surprising) conclusion that A and B are independent if and only if $n=3$:

$$
n \times 2^{-n}=(n+1)\left(1-2^{1-n}\right) 2^{-n} \Leftrightarrow(n+1) 2^{1-n}=1 \Leftrightarrow n=3 .
$$

Exercise 2

1.

$$
F_{X}(x)=0 \text { if } x<0, \quad F_{X}(x)=x \text { if } x \in[0,1], \quad F_{X}(x)=1 \text { if } x>1,
$$

and so

$$
f_{X}(x)=1 \text { if } x \in[0,1], \quad f_{X}(x)=0 \text { otherwise. }
$$

Hence

$$
E X=\int_{0}^{1} x d x=1 / 2, E\left(X^{2}\right)=\int_{0}^{1} x^{2} d x=1 / 3, \operatorname{Var}(X)=1 / 3-(1 / 2)^{2}=1 / 12
$$

2.

$P($ first decimal of X is equal to 1$)=P(0.1 \leq X<0.2)=0.2-0.1=0.1$.

Exercise 3

1. $F_{X}(x)=0$ if $x<0$, whilst for $x \geq 0$ we have that

$$
F_{X}(x)=\int_{0}^{x} \lambda \exp (-\lambda x) d x=1-\exp (-\lambda x)
$$

Furthermore, the mean is (use integration by parts):

$$
E(X)=\int_{0}^{\infty} x \lambda \exp (-\lambda x) d x=\ldots=\frac{1}{\lambda} .
$$

2.

$$
P(X>t+s \mid X>s)=\frac{P(X>t+s)}{P(X>s)}=\frac{\exp (-\lambda(s+t))}{\exp (-\lambda s)}=\exp (-\lambda t)
$$

SO

$$
P(X>t+s \mid X>s)=P(X>t)
$$

does not depend on s, which can be interpret as follows: the exponential distribution (or equivalently X) has no memory.

