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Mixture model

Conditional on parameters

θ = (θ1, . . . , θk), λ = (λ1, . . . , λk) with λ1, . . . , λk ≥ 0,

k
∑

j

λj = 1,

suppose that Y1, . . . , Yn are IID random variables with density

π(yi|λ, θ) = λ1π1(yi|θ1)+λ2π2(yi|θ2)+· · ·+λkπk(yi|θk), i = 1, . . . , n,

where πj(yi|θj) is a density for a jth ”component”which is selected with
probability λj , j = 1, . . . , k. E.g. πj(yi|θj) ∼ N (µj , τj) and θj = (µj , τj).

We call π(yi|λ, θ) a k component mixture density with mixture

weights λ1, . . . , λk (they specify a probability distribution).

Bayesian statistics, simulation and software Jesper Møller and Ege Rubak



3/15

Two applications/purposes

k component mixture density with mixture weights λ1, . . . , λk:

π(yi|λ, θ) = λ1π1(yi|θ1)+λ2π2(yi|θ2)+· · ·+λkπk(yi|θk), i = 1, . . . , n, IID.

1 Cluster analysis: Want to group the n observations into (at most k)
clusters corresponding to the unknown selection of components.

2 Density estimation: View it as a flexible model for modelling densities
(if k = ∞ it is often called nonparametric density estimation when
considering the posterior distribution of π(·|λ, θ) – we let k < ∞).
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Mixture model

Often in textbooks one is just given a mixture density (together with
some unobserved auxiliary variables as defined on the next slide) and one
uses the ‘EM-algorithm for missing data’ when finding what one hopes is
the MLE of (λ, θ).

Instead we will use a ”fully Bayesian approach”: Its posterior distribution
provides information not only about (θ, λ) (i.e., density estimation) but
also about the selection of components (cluster analysis).
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A hierarchical model introducing auxiliary variables

Conditioned on parameters

θ = (θ1, . . . , θk), λ = (λ1, . . . , λk) with λ1, . . . , λk ≥ 0,

k
∑

j

λj = 1,

suppose that Z1, . . . , Zn are IID random variables (‘auxiliary variables’)
with

P (Zi = j|λ, θ) = λj , j = 1, . . . , k, i = 1, . . . , n.

Then conditioned on both (θ, λ) and

Z = (Z1, . . . , Zn) = z = (z1, . . . , zn),

we can assume that Y1, . . . , Yn are independent and each Yi has
(conditional) density

π(yi|λ, θ, z) = πzi(yi|θzi).
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Missing data problem

y1 y2 · · · yn

z1 z2 · · · zn

λ

θ1 · · · θk

Notice we have only observed Y1 = y1, . . . , Yn = yn
(the data), i.e., the corresponding realization
Z1 = z1, . . . , Zn = zn is not observed (the auxiliary
variables are ‘missing data’).
We refer to y = (y1, . . . , yn) and z = (z1, . . . , zn)
as the full data.
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”Full likelihood = likelihood for data and missing data”

We have

π(yi|λ, θ, z) = πzi(yi|θzi) =
k
∏

j=1

πj(yi|θj)
1[zi=j]

and

P (Zi = zi|λ, θ) = P (Zi = zi|λ) = λzi =

k
∏

j=1

λ
1[zi=j]
j ,

so the joint density for the observations and missing variables (the
so-called ”full likelihood”) is

π(y, z|λ, θ) =
n
∏

i=1

πzi(yi|θzi)P (Zi = zi|λ) =
n
∏

i=1

k
∏

j=1

(

πj(yi|θj)λj

)1[zi=j]

.
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Prior

We (typically) assume a priori that

� θ and λ are independent;

� θ1, . . . , θk are independent;

� θj ∼ πj , j = 1, . . . , k (densities depending on the problem at hand,
e.g. θj = (µj , τj) ∼ N (µj0, τj0)×Gamma(αj , βj) or see exercise);

� e.g. λ = (λ1, . . . , λk) could be uniformly distributed on the
(k − 1)-dimensional simplex

∆k−1 = {(p1, . . . , pk) ∈ [0, 1]k :
k

∑

j=1

pj = 1}

(the set of probability distributions on {1, 2, . . . , k});
this is an example of a so-called Dirichlet(1, . . . , 1)-distribution;

� let us assume
λ ∼ Dirichlet(α1, . . . , αk)

(see next slide).
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Dirichlet distribution

Definition: Let k ≥ 2 be an integer. A k-dimensional random vector
λ = (λ1, . . . , λk) follows a Dirichlet distribution with parameters
α = (α1, . . . , αk) ∈ (0,∞)k if (λ1, . . . , λk−1) has density

π(λ1, . . . , λk−1|α) ∝
k
∏

j=1

λ
αj−1
j

where λj ∈ [0, 1] for j = 1, . . . , k − 1 so that λk := 1−
∑k−1

j=1 λj ∈ [0, 1].

� Uniform on ∆k−1 if α1 = . . . = αk = 1.

� Dirichlet(α1, α2) = Be(α1, α2) (the case k = 2).

� Simulation is easy: If X1 ∼ Γ(α1, 1), . . . , Xk ∼ Γ(αk, 1) are
independent and S = X1 + . . .+Xk, then

(

X1

S
, . . . ,

Xk

S

)

∼ Dirichlet(α1, . . . , αk).

Bayesian statistics, simulation and software Jesper Møller and Ege Rubak



10/15

Graphical representation

y1 y2 · · · yn

z1 z2 · · · zn

λ

θ1 · · · θk

� λ = (λ1, . . . , λk) ∼ Dirichlet(α1, . . . , αk).
� Given λ:

P (zi = j|λ) = λj , j = 1, . . . , k, i = 1, . . . , n

� Given λ, θ, z:

yi has density πzi(yi|θzi), i = 1, . . . , n.

� θj ∼ πj for j = 1, . . . , k are independent (a
priori assumption).
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Posterior

As y is the data, the unknown variables are the missing data z and the
parameter vectors λ and θ – we include all of them into the posterior!

The posterior density is

π(z, λ, θ|y) ∝ π(y, z|λ, θ)π(λ, θ) = π(y, z|λ, θ)π(λ)π(θ)

∝







n
∏

i=1

k
∏

j=1

(

πj(yi|θj)λj

)1[zi=j]












k
∏

j=1

λ
αj−1
j













k
∏

j=1

πj(θj)







.

Looks complicated but we can easily handle all the full conditions
– see next slides.
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Full conditional for each zi

For each i = 1, . . . , n, setting z
−i = (z1, . . . , zi−1, zi+1, . . . , zn) we have

π(zi|y, λ, θ, z−i) ∝ πzi(yi|θzi)λzi , zi ∈ {1, . . . , k},

which is a simple distribution to sample from (just use the R-command
‘sample’).
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Full conditional for each θj

For each j = 1, . . . , k, setting θ
−j = (θ1, . . . , θj−1, θj+1, . . . , θk) we have

π(θj |θ−j , λ, y, z) ∝ πj(θj)
∏

i:zi=j

πj(yi|θj).

This is equivalent to the posterior density for the case of independent
observations from πj(·|θj) (i.e., when considering only the observations
selected from the jth component).

For example, if the mixture component density πj(yj |θj) is normal, with
θj being the mean and/or the precision parameter(s), and we choose a
prior density πj(θj) as in earlier lectures, we know how to sample from
this full conditional: it is

� a normal distribution if θj is the mean parameter ∼ N -distribution,

� a gamma distribution if θj is the precision parameter
∼ Gamma-distribution,

� a normal × gamma distribution if θj is the mean and precision
parameters ∼ N ×Gamma-distribution.
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Full conditional for λ

The (joint) full conditional distribution of λ is

π(λ|θ, y, z) ∝
k
∏

j=1

λ
nj(z)+αj−1
j ∼ Dirichlet(n1(z) + α1, . . . , nk(z) + αk),

where nj(z) is the number of auxiliary variables zi which are equal to j.

So it is easy to simulate from this full conditional.
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Conclusion

It is possible to make a fully Bayesian analysis of a mixture model for IID
data Y1, . . . , Yn with unknown mixture weights λ = (λ1, . . . , λk) and
unknown parameters θ = (θ1, . . . , θk) by considering auxillary variables
Z1, . . . , Zk which are included into the posterior together with (θ, λ).

For the posterior simulations we may use a Metropolis within Gibbs
sampler, where a sweep consists of updating

zi| · · · , i = 1, . . . , n, (easy: use a Gibbs type update);

θj | · · · , j = 1, . . . , k, (easy: Gibbs type update if standard priors are used –

else make e.g. a random walk Metroplis type update);

λ| · · · (easy: use a Gibbs type update).

Note that we fixed k – in more advanced work k is also treated as an
unknown parameter...

This is now followed by an exercise, considering different cases with
known values of k.
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