Bayesian statistics, simulation and software

Module 8: More MCMC: Invariant density, irreducibility, Metropolis-Hastings algorithm

Jesper Møller and Ege Rubak

Department of Mathematical Sciences Aalborg University Recall that given a density $\pi(x)$ – which we think of as a target density (e.g. a prior density or a posterior density) from which we want to make simulations – a MCMC algorithm is a way of constructing a Markov chain X_0, X_1, \ldots to produce such simulations (at least approximately). NB: We use two notations for the Markov chain at time t (with the same meaning!):

- X_t (as above) convenient when X_t is 1-dimensional or if we do not decompose X_t if it is higher-dimensional.
- $X^{(t)}$ convenient when e.g. $X^{(t)} = (X_1^{(t)}, \dots, X_k^{(t)})$ is *k*-dimensional and we consider its *i*'th coordinate.

Today we provide the theory ensuring that this works: we discuss conditions ensuring that π becomes the **limiting density** π , that is, for any event A we have

$$P(X_t \in A) \to \int_A \pi(x) dx \quad \text{as } t \to \infty.$$

NB: Here and in the following we assume π is a probability density function, but everything works as well when it is a probability mass function (then just replace integrals by sums) – or a density for a combination of discrete and continuous random variables...

Definition: Invariant density

A Markov chain with transition kernel P(x, A) has invariant (or stationary or equilibrium) density $\pi(x)$, if for all events $A \subseteq \Omega$,

$$\int_{\Omega} \pi(x) P(x, A) dx = \int_{A} \pi(x) dx.$$

In other words, if at some time t we have that X_t has density π , then X_{t+1} has density π , and hence at any time $s \ge t$ we have that X_s has density π .

It can be shown that if the Markov chain has a limiting density π , then π must be an invariant density of the Markov chain.

Invariance for the Metropolis-Hastings algorithm

Theorem

The Metropolis-Hastings algorithm produces a time homogeneous Markov chain with its target density π as its invariant density.

Irreducible

Definition: Irreducible Markov chain

A Markov chain with invariant density $\pi(x)$ is **irreducible** if for all states $x \in \Omega$ and all events $A \subseteq \Omega$ with $\int_A \pi(x) dx > 0$, there exists a time $n \in \{1, 2, \ldots\}$ so that

 $P^n(x,A) > 0.$

Otherwise it is said to be reducible.

Briefly speaking this means that for any feasible event A, no matter at which state x the Markov chain is started, it is possible within a finite time that the Markov chain reaches A.

FACT: If the Markov chain has a limiting density π , then the Markov chain must be irreducible!

Theorem

An irreducible Markov chain has a unique invariant distribution.

FACT: So if a Markov chain has a limiting density π , then it is the unique invariant density!

Theorem

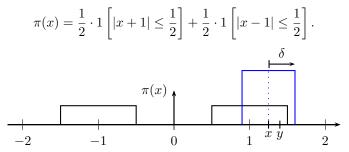
If for all states $x, y \in \Omega$, we have q(x, y) > 0 whenever $\pi(y) > 0$, then the MH algorithm produces an irreducible Markov chain and π is its unique invariant density.

Remark: We return later to what is needed extra in order to ensure convergence of the distribution of X_t towards π . In fact, as we shall soon see, irreducibility is effectively all we need in order to use Monte Carlo estimates!

Remark: It follows that for a Gibbs sampler simulating from a positive density, that is, $\pi(x) > 0$ for all $x = (x_1, \ldots, x_k) \in \Omega = \Omega_1 \times \ldots \times \Omega_k$, we have irreducibility and so π is the unique invariant density.

Example

Consider a target density

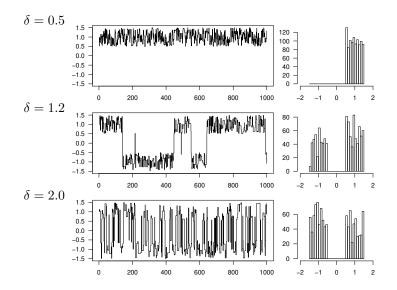


Consider a random walk Metropolis algorithm with a uniform proposal density centred at the current value:

$$q(x,y) = \frac{1}{2\delta} \mathbb{1}\left[|x - y| \le \delta \right].$$

Indeed this proposal density is symmetric in x and y: q(x, y) = q(y, x). Notice: Irreducible if and only if $\delta > 1$.

Example — cont.



9/19

Theorem: Strong law of large numbers for Markov chains

Consider an **irreducible** Markov chain with $\pi(x)$ as its invariant density, and a function $h: \Omega \to \mathbf{R}$ so that the **mean** $\mu = \int h(x)\pi(x)dx$ **exists**. For any $m \ge 0$ (the **burn-in**, i.e. the time we start to keep samples), define the **sample mean**

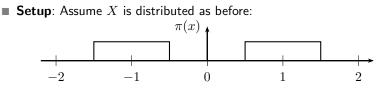
$$\hat{\mu}_n = \frac{1}{n+1} \sum_{t=m}^{m+n} h(X^{(t)}).$$

Then there exists a set $C \subseteq \Omega$ with $\int_C \pi(x) dx = 1$ so that for all $x \in C$

$$P(\hat{\mu}_n \to \mu \text{ as } n \to \infty | X^{(0)} = x) = 1.$$

The estimator $\hat{\mu}_n$ is a so-called **MCMC estimator** of $\mathbb{E}[h(X)]$. We say much more about the burn-in later.

Example



Question: What is the probability $P(X \ge 0)$?

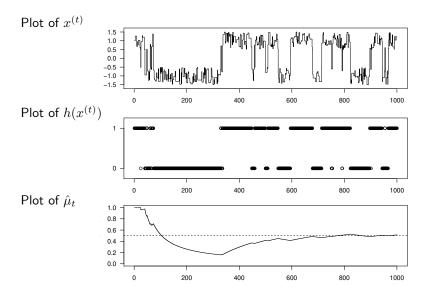
Notice that $P(X \ge 0) = \mathbb{E} \left[\mathbb{1}[X \ge 0]\right] \left(=\frac{1}{2} \text{ of course}\right)$.

• Accordingly, let
$$h(x) = \mathbb{1}[x \ge 0]$$
.

- **Solution**: Generate a realization $x^{(1)}, x^{(2)}, \ldots, x^{(1000)}$ of the Markov chain with a proposal density as before so that irreducibility is ensured .
- \blacksquare An MCMC estimate for $P(X \ge 0)$ is then

$$\hat{\mu}_{1000} = \frac{1}{1000} \sum_{i=1}^{1000} \mathbb{1}[x^{(i)} \ge 0].$$

Example *cont.*



Definition: Periodicity and aperiodicity

An irreducible Markov chain is **periodic** if there exists a partition $\Omega = A_0 \cup A_1 \cup A_2 \cup \dots \cup A_k \text{ (so } A_i \cap A_j = \emptyset \text{ whenever } i \neq j \text{), where } \int_{A_0} \pi(x) dx = 0, \ k \geq 2 \text{ and}$ $\blacksquare x \in A_1 \Rightarrow P(x, A_2) = 1,$ $\blacksquare x \in A_2 \Rightarrow P(x, A_3) = 1,$ $\blacksquare \vdots$ $\blacksquare x \in A_k \Rightarrow P(x, A_1) = 1.$ The Markov chain is **aperiodic** if it is not periodic.

Theorem

If $P(x, \{x\}) > 0$ (that is, $X_{t+1} = X_t$ may happen with a positive probability), then it is an aperiodic Markov chain.

Example

Consider again the target density

$$\pi(x) = \frac{1}{2} \cdot 1 \left[|x+1| \le \frac{1}{2} \right] + \frac{1}{2} \cdot 1 \left[|x-1| \le \frac{1}{2} \right].$$

Consider the proposal density

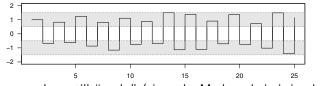
$$q(x,y) = \mathbb{1}\left[\left| y + \mathsf{sign}(x) \right| \leq \frac{1}{2} \right].$$

Accordingly:

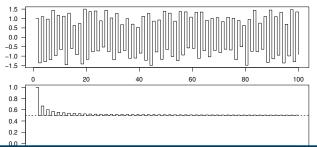
■ If
$$x > 0$$
, then $y \sim \text{Unif}([-1.5, -0.5])$ and $a(x, y) = 1$.
■ If $x < 0$, then $y \sim \text{Unif}([0.5, 1.5])$ and $a(x, y) = 1$.

Periodicity: Example cont.

Thus the Markov chain is irreducible but periodic (switching between the intervals [-1.5, -0.5] and [0.5, 1.5]):



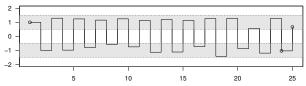
Law of large numbers still "works" (since the Markov chain is irreducible):



Bayesian statistics, simulation and software

Periodicity: Example cont.

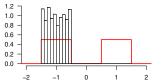
Since the Markov chain is periodic



it does not not converge towards a limiting distribution:

1000 replicates of $x^{(24)}$ when $x^{(0)} = 1$

1.0 0.8 0.4 0.2 0.0 -2 -2 -1 0 12 1000 replicates of $\boldsymbol{x}^{(23)}$ when $\boldsymbol{x}^{(0)}=1$



Theorem: Markov chain convergence theorem

For an irreducible and aperiodic Markov chain with invariant density $\pi(x)$, there exists $C \subseteq \Omega$, so that $\int_C \pi(x) dx = 1$ and for all $x \in C$ and $A \subseteq \Omega$ we have

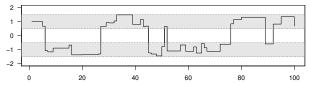
$$P(X_t \in A | X_0 = x) \to \int_A \pi(x) dx \quad \text{as } t \to \infty.$$

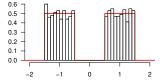
In other words, no matter where the chain starts (except in the " π -nullset" C), as the time t goes along, the distribution of X_t converges towards the target distribution with density π .

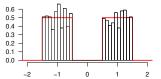
If the Markov chain is Harris recurrent (this technical concept is not defined in this course), then $C = \Omega$ (so no worries about if we started outside C).

Convergence: Example

Consider the irreducible and aperiodic chain from earlier ($\delta = 2$):







Convergence: Example cont.

When $X^{(1)} = 1$ (so start at time 1 – doesn't matter), from the top left to the bottom right, 1000 replicates of $X^{(1)}, X^{(2)}, \ldots, X^{(12)}$, respectively:

