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The Gibbs sampler — the general algorithm

Aim: We want to sample θ = (θ1, θ2, . . . , θk) from a density π(θ), e.g.
the prior or the posterior density (in the latter case, suppressing in the
notation the dependence of the data x: π(θ) = π(θ|x)).
Assume θi ∈ Ωi ⊆ Rdi and θ ∈ Ω1 × Ω2 × · · · × Ωk ⊆ Rd1+d2+···+dk

We can then generate an approximate sample from π(θ) (provided some
technical conditions are satisfied) as follows:

Gibbs Sampler
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The higher i is the closer θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
k ) is to being a sample

from π(θ).
When d1, . . . , dk are small, Gibbs sampling may be easy to use.
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Example: Marriage rates in Italy

For the years 1936 to 1951 (16 years) the marriage rates per 1000 of the
population in Italy have been observed. How do we compare marriage
rates that occurred during WW2 to rates just before and after?

Data: y = (y1, y2, . . . , y16).
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Italian marriages: Model

Model: Conditional on (true) rates λ1, λ2, . . . , λ16 the observed rates
y1, y2, . . . , y16 are independent and yi ∼ Pois(λi):

� Joint density of data y:

π(y|λ) =

16
∏

i=1

π(yi|λi) =

16
∏

i=1

e−λiλ
yi

i

yi!
.
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Italian marriages: Prior and hyper prior

Prior: Conditional on a hyper parameter β > 0 the rates λ1, λ2, . . . , λ16

are i.i.d. with λi|β ∼ Exp(β):

� The prior density of λ = (λ1, . . . , λ16) conditional on β is

π(λ|β) =
16
∏

i=1

π(λi|β) =
16
∏

i=1

β exp(−βλi).

As we are not sure which value the common parameter β should take, we
assume a so-called hyper prior on β:

� β ∼ Exp(1), i.e. π(β) = e−β for β > 0.

Thus the prior density for (λ, β) is

π(λ, β) = π(β)π(λ|β) = e−β

16
∏

i=1

β exp(−βλi), (λ, β) ∈ (0,∞)17.

Bayesian statistics, simulation and software Jesper Møller and Ege Rubak



6/16

Posterior

Posterior density:

π(λ, β|y) ∝ π(y|λ, β)π(λ, β)

=
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∏
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)

e−β , λ1, . . . , λ16, β > 0.

This looks complicated. Therefore to explore the posterior we make use
of a Gibbs sampler with low dimensional distributions – these are called
full conditionals and are specified as follows.
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Full conditionals — λi conditioned on anything else

� Let λ
−i = (λ1, . . . , λi−1, λi+1, . . . , λ16), i = 1, . . . , 16.

� The full conditional for λi has density

π(λi|λ−i,y, β) =
π(λi,λ−i,y, β)

π(λ
−i,y, β)

∝ π(λ,y, β)

=





16
∏

j=1

π(yj |λj)









16
∏

j=1

π(λj |β)



π(β)

∝ π(yi|λi)π(λi|β)

=
e−λiλ

yi

i

yi!
· βe−βλi

∝ λ
yi+1−1
i e−λi(1+β)

∼ Gamma(yi + 1, (1 + β)−1),
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Full conditionals — β

� The full conditional for β has density

π(β|λ,y) ∝

(
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∏
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∏
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∏
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∑
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)

−1
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Posterior marriage rates: Boxplots

Although there is a clear trend of a drop during WW2 it is not extreme:
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Posterior distribution of β

Note that β−1 is the prior mean of a marriage rate.

Histogram of β
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Example: Airport mishandling of luggage

Every hour the number of mishandled bags have been recorded:
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Notation:

� Let yt ∈ N0 denote the number of mishandled bags at time (hour) t.

� We consider two unknown cases/states at the airport: ‘Normal’ or
‘broken’. Let xt ∈ {1, 2} denote the state of the airport at time t

(1=normal, 2=broken).

Objective:

� Estimate the state of the airport at each hour.
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Data model

� Conditional on x = (x1, . . . , x100) we assume the number of
mishandled bags y1, . . . , yn are independent, and the conditional
distribution of each yt|x depends only on xt: yt|x ∼ yt|xt.

� Specifically, (based on previous knowledge) we assume

◮ yt|xt = 1 ∼ Pois(10) Normal state

◮ yt|xt = 2 ∼ Pois(15) Broken state

Note that the MLE of xt (i.e., the most likely state according to the data
model) is 1 if and only if p(yt|xt = 1) > p(yt|xt = 2), that is,

e−1010yt

yt!
>

e−1515yt

yt!
⇔

(

10

15

)yt

> e−5 ⇔ yt >
5

ln 15− ln 10
.
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Prior

It is known that the airport tends to ‘stick’ in the same state. Thus the
prior for x is assumed to be a Markov chain:

� P (x1 = 1) = P (x1 = 2) = 1
2 (probabilities for initial state)

� P (xt+1 = xt|xt) = 0.9 (probability of staying)

� P (xt+1 6= xt|xt) = 0.1 (probability of switching)

Example of a realisation from the prior:
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Posterior

The posterior density is

π(x|y) ∝ π(y|x)π(x)

=

(

100
∏

t=1

π(yt|xt)

)(

π(x1)

99
∏

t=1

π(xt+1|xt)

)

Thus we obtain a full conditional for each xt:

π(x1|y1,x−1) ∝ π(y1|x1)π(x1)π(x2|x1),

π(xt|yt,x−t) ∝ π(yt|xt)π(xt+1|xt)π(xt|xt−1) for t = 2, 3, . . . , 99,

π(x100|y100,x−100) ∝ π(y100|x100)π(x100|x99).

Since xt ∈ {1, 2}, it is easy to simulate xt from this full conditional.
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Posterior results

Example: Plot of e.g. x30 during I = 250 “sweeps” of the Gibbs sampler:

0 50 100 150 200 250

1.0

1.2

1.4

1.6

1.8

2.0
x
[,
 3

0
]

Estimate of the posterior probability that x30 = 1:

P (x30 = 1|y) ≈
1

I

I
∑

i=1

1[x30,i = 1] = 57.2%.

For all hours: Plot of posterior probabilities P (xt = 1|y), t = 1, . . . , 100.
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Comparison

MAP = the most likely state according to the posterior distribution:
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Compare with the MLE (the most likely state using only the data model):
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Which of these 3 plots do you like? (I like the plots of posterior
probabilities together with the MAP!)
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