Bayesian statistics, simulation and software Module 6: The Gibbs sampler

Jesper Møller and Ege Rubak

Department of Mathematical Sciences Aalborg University

The Gibbs sampler — the general algorithm

Aim: We want to sample $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$ from a density $\pi(\boldsymbol{\theta})$, e.g. the prior or the posterior density (in the latter case, suppressing in the notation the dependence of the data x: $\pi(\boldsymbol{\theta}) = \pi(\boldsymbol{\theta}|x)$). Assume $\theta_i \in \Omega_i \subseteq \mathbf{R}^{d_i}$ and $\boldsymbol{\theta} \in \Omega_1 \times \Omega_2 \times \cdots \times \Omega_k \subseteq \mathbf{R}^{d_1+d_2+\cdots+d_k}$ We can then generate an *approximate* sample from $\pi(\boldsymbol{\theta})$ (provided some technical conditions are satisfied) as follows:

Gibbs Sampler

Choose initial value
$$\theta^{(0)} = (\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_k^{(0)}).$$
For $i = 1, 2, \dots, t$
1. Generate $\theta_1^{(i)} \sim \pi(\theta_1 | \theta_2^{(i-1)}, \theta_3^{(i-1)}, \dots, \theta_k^{(i-1)})$
2. Generate $\theta_2^{(i)} \sim \pi(\theta_2 | \theta_1^{(i)}, \theta_3^{(i-1)}, \dots, \theta_k^{(i-1)})$
 \vdots
k. Generate $\theta_k^{(i)} \sim \pi(\theta_k | \theta_1^{(i)}, \theta_2^{(i)}, \dots, \theta_{k-1}^{(i)})$

The higher *i* is the closer $\boldsymbol{\theta}^{(i)} = (\theta_1^{(i)}, \theta_2^{(i)}, \dots, \theta_k^{(i)})$ is to being a sample from $\pi(\boldsymbol{\theta})$. When d_1, \dots, d_k are small, Gibbs sampling may be easy to use.

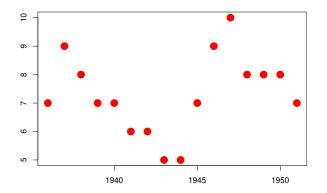
Bayesian statistics, simulation and software

Jesper Møller and Ege Rubak

Example: Marriage rates in Italy

For the years 1936 to 1951 (16 years) the marriage rates per 1000 of the population in Italy have been observed. How do we compare marriage rates that occurred during WW2 to rates just before and after?

Data: $y = (y_1, y_2, \dots, y_{16}).$



Model: Conditional on (true) rates $\lambda_1, \lambda_2, \ldots, \lambda_{16}$ the observed rates y_1, y_2, \ldots, y_{16} are independent and $y_i \sim Pois(\lambda_i)$:

Joint density of data y:

$$\pi(\mathbf{y}|\boldsymbol{\lambda}) = \prod_{i=1}^{16} \pi(y_i|\lambda_i) = \prod_{i=1}^{16} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}.$$

Italian marriages: Prior and hyper prior

Prior: Conditional on a hyper parameter $\beta > 0$ the rates $\lambda_1, \lambda_2, \ldots, \lambda_{16}$ are i.i.d. with $\lambda_i | \beta \sim Exp(\beta)$:

• The prior density of $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_{16})$ conditional on β is

$$\pi(\boldsymbol{\lambda}|\boldsymbol{\beta}) = \prod_{i=1}^{16} \pi(\lambda_i|\boldsymbol{\beta}) = \prod_{i=1}^{16} \beta \exp(-\beta \lambda_i).$$

As we are not sure which value the common parameter β should take, we assume a so-called *hyper prior* on β :

Thus the prior density for $(\boldsymbol{\lambda}, \beta)$ is

$$\pi(\boldsymbol{\lambda},\beta) = \pi(\beta)\pi(\boldsymbol{\lambda}|\beta) = e^{-\beta} \prod_{i=1}^{16} \beta \exp(-\beta\lambda_i), \qquad (\boldsymbol{\lambda},\beta) \in (0,\infty)^{17}.$$

Posterior density:

$$\begin{aligned} \pi(\boldsymbol{\lambda}, \beta | \mathbf{y}) &\propto \pi(\mathbf{y} | \boldsymbol{\lambda}, \beta) \pi(\boldsymbol{\lambda}, \beta) \\ &= \left(\prod_{i=1}^{16} \pi(y_i | \lambda_i)\right) \left(\prod_{i=1}^{16} \pi(\lambda_i | \beta)\right) \pi(\beta) \\ &= \left(\prod_{i=1}^{16} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}\right) \left(\prod_{i=1}^{16} \beta e^{-\beta\lambda_i}\right) e^{-\beta}, \quad \lambda_1, \dots, \lambda_{16}, \beta > 0. \end{aligned}$$

This looks complicated. Therefore to explore the posterior we make use of a Gibbs sampler with low dimensional distributions – these are called full conditionals and are specified as follows.

Full conditionals — λ_i conditioned on anything else

Let
$$\lambda_{-i} = (\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_{16}), i = 1, \dots, 16.$$

The full conditional for λ_i has density

$$\begin{aligned} \pi(\lambda_i | \boldsymbol{\lambda}_{-i}, \mathbf{y}, \beta) &= \frac{\pi(\lambda_i, \boldsymbol{\lambda}_{-i}, \mathbf{y}, \beta)}{\pi(\boldsymbol{\lambda}_{-i}, \mathbf{y}, \beta)} \propto \pi(\boldsymbol{\lambda}, \mathbf{y}, \beta) \\ &= \left(\prod_{j=1}^{16} \pi(y_j | \lambda_j)\right) \left(\prod_{j=1}^{16} \pi(\lambda_j | \beta)\right) \pi(\beta) \\ &\propto \pi(y_i | \lambda_i) \pi(\lambda_i | \beta) \\ &= \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!} \cdot \beta e^{-\beta\lambda_i} \\ &\propto \lambda_i^{y_i + 1 - 1} e^{-\lambda_i (1 + \beta)} \\ &\sim Gamma(y_i + 1, (1 + \beta)^{-1}), \end{aligned}$$

Full conditionals — β

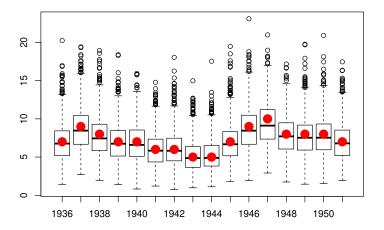
 \blacksquare The full conditional for β has density

 π

$$(\beta|\boldsymbol{\lambda}, \mathbf{y}) \propto \left(\prod_{i=1}^{16} \pi(y_i|\lambda_i)\right) \left(\prod_{i=1}^{16} \pi(\lambda_i|\beta)\right) \pi(\beta)$$
$$\propto \left(\prod_{i=1}^{16} \pi(\lambda_i|\beta)\right) \pi(\beta)$$
$$= \left(\prod_{i=1}^{16} \beta e^{-\beta\lambda_i}\right) e^{-\beta}$$
$$\propto \beta^{16+1-1} e^{-\beta(1+\sum_{i=1}^{16}\lambda_i)}$$
$$\sim Gamma\left(17, \left(1+\sum_{i=1}^{n} \lambda_i\right)^{-1}\right).$$

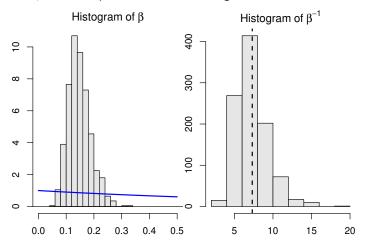
8/16

Although there is a clear trend of a drop during WW2 it is not extreme:



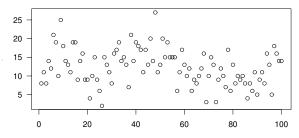
Posterior distribution of β

Note that β^{-1} is the prior mean of a marriage rate.



Example: Airport mishandling of luggage

Every hour the number of mishandled bags have been recorded:



Notation:

- Let $y_t \in \mathbb{N}_0$ denote the number of mishandled bags at time (hour) t.
- We consider two unknown cases/states at the airport: 'Normal' or 'broken'. Let $x_t \in \{1, 2\}$ denote the state of the airport at time t (1=normal, 2=broken).

Objective:

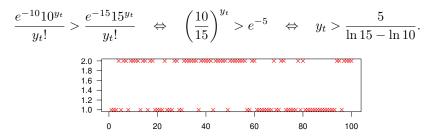
Estimate the state of the airport at each hour.

Data model

- Conditional on x = (x₁,..., x₁₀₀) we assume the number of mishandled bags y₁,..., y_n are independent, and the conditional distribution of each y_t|x depends only on x_t: y_t|x ~ y_t|x_t.
- Specifically, (based on previous knowledge) we assume

▶
$$y_t | x_t = 1 \sim Pois(10)$$
 Normal state
▶ $y_t | x_t = 2 \sim Pois(15)$ Broken state

Note that the <u>MLE</u> of x_t (i.e., the most likely state according to the data model) is 1 if and only if $p(y_t|x_t = 1) > p(y_t|x_t = 2)$, that is,

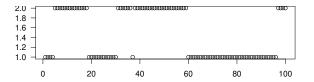


Prior

It is known that the airport tends to 'stick' in the same state. Thus the prior for \mathbf{x} is assumed to be a Markov chain:

- $P(x_1 = 1) = P(x_1 = 2) = \frac{1}{2}$ (probabilities for initial state) $P(x_{t+1} = x_t | x_t) = 0.9$ (probability of staying)
- $P(x_{t+1} \neq x_t | x_t) = 0.1$ (probability of switching)

Example of a realisation from the prior:



Posterior

The posterior density is

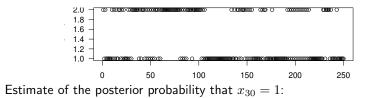
$$\pi(\mathbf{x}|\mathbf{y}) \propto \pi(\mathbf{y}|\mathbf{x})\pi(\mathbf{x})$$
$$= \left(\prod_{t=1}^{100} \pi(y_t|x_t)\right) \left(\pi(x_1) \prod_{t=1}^{99} \pi(x_{t+1}|x_t)\right)$$

Thus we obtain a full conditional for each x_t :

$$\begin{aligned} \pi(x_1|y_1,\mathbf{x}_{-1}) &\propto \pi(y_1|x_1)\pi(x_1)\pi(x_2|x_1), \\ \pi(x_t|y_t,\mathbf{x}_{-t}) &\propto \pi(y_t|x_t)\pi(x_{t+1}|x_t)\pi(x_t|x_{t-1}) \quad \text{for } t = 2, 3, \dots, 99, \\ \pi(x_{100}|y_{100},\mathbf{x}_{-100}) &\propto \pi(y_{100}|x_{100})\pi(x_{100}|x_{99}). \end{aligned}$$

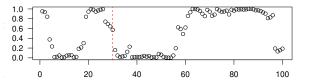
Since $x_t \in \{1, 2\}$, it is easy to simulate x_t from this full conditional.

Example: Plot of e.g. x_{30} during I = 250 "sweeps" of the Gibbs sampler:

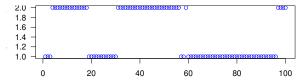


$$P(x_{30} = 1 | \mathbf{y}) \approx \frac{1}{I} \sum_{i=1}^{I} \mathbb{1}[x_{30,i} = 1] = 57.2\%.$$

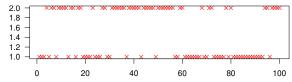
For all hours: Plot of posterior probabilities $P(x_t = 1 | \mathbf{y}), t = 1, \dots, 100$.



MAP = the most likely state according to the posterior distribution:



Compare with the MLE (the most likely state using only the data model):



Which of these 3 plots do you like? (I like the plots of posterior probabilities together with the MAP!)