Module 3: Binomial model

Ege Rubak and Jesper Møller
Based on material by Søren Højsgaard

Rolling a six

Consider a simple experiment: Roll a die n times; record the number of times six comes up, and denote it y. Suppose e.g. $n=10$ and $y=3$.

We let θ denote the true (but to us unknown) probability of rolling a six (success) and $1-\theta$ is the probability of a roll less than six (failure):

$$
\operatorname{Pr}(S)=\theta, \quad \operatorname{Pr}(F)=1-\theta
$$

The binomial model

The binomial distribution could be a model for these data: $y=3$ is a realization of a binomial random variable $Y \sim \operatorname{bin}(n, \theta)$.

The density for y is

$$
\operatorname{Pr}(Y=y ; \theta)=\frac{n!}{y!(n-y)!} \theta^{y}(1-\theta)^{n-y} .
$$

yval <- 0:10
barplot(dbinom(yval, size=10, prob=1/6), names.arg=yval)

Thus, if we know θ, then we can make all sorts of interesting computations based on the binomial model. E.g. the mean and variance which are given by

$$
\mathrm{E}(Y)=n \theta, \quad \operatorname{Var}(Y)=n \theta(1-\theta)
$$

Or we can calculate the probability of seeing 0 sixes or the probability of seeing 5 or more sixes when rolling a die 10 times.
For example, if the die is fair and $\theta=1 / 6$ we get

```
dbinom(0, size=10, prob=1/6) # Pr(0 sixes)
## [1] 0.1615056
```

```
1-pbinom(4, size=10, prob=1/6) # Pr(5 or more sixes)
```

\#\# [1] 0.01546197

A moment estimate

In practice θ is unknown and must be estimated from data. Intuition says that θ should be estimated as

$$
\hat{\theta}=y / n=3 / 10=0.3
$$

It is useful to write $\hat{\theta}(y)=y / n$ to emphasize the dependence on data.
For the corresponding random variable $\hat{\theta}(Y)=Y / n$,

$$
\mathrm{E}(Y / n)=\theta, \quad \operatorname{Var}(Y / n)=\frac{1}{n^{2}} n \theta(1-\theta)=\theta(1-\theta) / n
$$

Hence $\hat{\theta}(Y)$ has the correct mean value (unbiased) and the variance of $\hat{\theta}(Y)$ goes to 0 when $n \rightarrow \infty$ (consistent).
To calculate the variance, we plug in the estimate and find

$$
\operatorname{Var}(Y / n) \approx \frac{y}{n}\left(1-\frac{y}{n}\right) / n=0.3 \times 0.7 / 10=0.021
$$

I.e. the estimated standard deviation of the estimate (called std. error) is approximately $\sqrt{0.021}=0.14$.

The likelihood

When $y=3$ is observed, then the binomial density is a function of θ, and it is called the likelihood function:

$$
L(\theta)=\operatorname{Pr}_{\theta}(Y=y)=\frac{n!}{y!(n-y)!} \theta^{y}(1-\theta)^{n-y} \propto \theta^{y}(1-\theta)^{n-y}
$$

Hence, the log-likelihood is

$$
l(\theta)=\log L(\theta)=y \log \theta+(n-y) \log (1-\theta)
$$

```
lik <- function(parm, y, n){parm^y * (1 - parm)^(n - y)}
loglik <- function(parm, y, n){y * log(parm) + (n - y) * log(1 - parm)}
n <- 10; y <- 3
curve(lik(x, y, n), main = "Likelihood")
abline(v = y/n, col = "red", lty = 2)
curve(loglik(x, y, n), main = "Log-likelihood", ylim = c(-20, -5))
abline(v = y/n, col = "red", lty = 2)
```


The frequentist approach

From a frequentist perspective we want to find the "best" estimate of θ given data, and "best" is here the value of θ that maximizes $L()$. The estimate is called the maximum likelihood estimate (MLE).

In practice it is usually easier to maximize $l(\theta)=\log L(\theta)$ instead of $L(\theta)$ because the log turns a product into a sum, and sums are easier to differentiate than products.

The usual approach to maximizing $l(\theta)$ is to first differentiate $l(\theta)$ to obtain

$$
S(\theta)=l^{\prime}(\theta)
$$

where $S(\theta)$ is called the score function. Next we solve the score equation $S(\theta)=0$ to obtain $\hat{\theta}$.
It is not hard to spot that the maximum of $L()$ (and of $l())$ is at $\theta=y / n=0.3$, but it is informative to look at the plots for different choices of n and y. This is left as an exercise.

Summary of frequentist approach

- When we have a statistical model (a probability distribution) and data, then we have the likelihood (and the log-likelihood) functions.
- The maximum likelihood estimate (MLE) $\hat{\theta}$ is the value of θ that maximizes the likelihood function.
- The variance of the corresponding estimator is approximately minus the inverse of the second derivative of the log likelihood evaluated at the MLE.

The Bayesian approach

If we take a Bayesian perspective then things change as explained in the main slides for this module:

The parameter θ is a random quantity on equal footing with Y
and we have to specifiy the prior

$$
\pi(\theta)
$$

This is our belief about θ before seeing any data, and then given data y we get the posterior from the likelihood via Bayes' rule

$$
\pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}
$$

where $\pi(y \mid \theta)$ is (proportional to) the likelihood we have specified previously and $\pi(y)$ is the marginal probability for the data y.
When data y is observed then $\pi(y)$ above is just a number, which ensures that $\pi(\theta \mid y)$ is a density, i.e. that $\int \pi(\theta \mid y) d \theta=1$. We do often not calulate $\pi(y)$ directly: We just use that $\pi(\theta \mid y) \propto \pi(y \mid \theta) \pi(\theta)$

A discrete prior

Example: Assume (to ease computations) that the only valid choices for θ are now $.1, .3, .5, .7$ and .9 . Before rolling the die we think the die has been rigged somehow and we take the prior to be

```
theta <- c(.1, .3, .5, .7, .9)
prior <- c(0.10, 0.15, 0.25, 0.30, 0.20)
```

Then we can calculate the likelihood and the posterior

```
n <- 10; y <- 3
likval <- lik(theta, y, n)
posterior <- likval * prior
posterior <- posterior / sum( posterior )
round(100*posterior, 3)
```

\#\# [1] $7.381 \quad 51.470 \quad 37.675 \quad 3.473 \quad 0.002$

The plot shows it all:

```
par(mfrow=c(1,3), mar = c(3, 3, 3, 0.5))
barplot(prior, main="prior", names.arg=theta, ylim = c(0, .55))
barplot(likval, main="likelihood", names.arg=theta)
barplot(posterior, main="posterior", names.arg=theta, ylim = c(0, .55))
```


prior
likelihood

posterior

We can compute e.g. the prior and posterior means:

```
sum(theta * prior)
```

\#\# [1] 0.57

```
sum(theta * posterior)
```

\#\# [1] 0.374492

And corresponding variances (uncertanties before and after seeing data).

```
sum(theta^2 * prior) - sum(theta * prior)^2
## [1] 0.0611
sum(theta^2 * posterior) - sum(theta * posterior)^2
## [1] 0.01803762
```

