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Based on material by Søren Højsgaard

Rolling a six

Consider a simple experiment: Roll a die n times; record the number of times six comes up, and denote it y.

Suppose e.g. n = 10 and y = 3.

We let θ denote the true (but to us unknown) probability of rolling a six (success) and 1− θ is the probability
of a roll less than six (failure):

Pr(S) = θ, Pr(F ) = 1− θ.

The binomial model

The binomial distribution could be a model for these data: y = 3 is a realization of a binomial random
variable Y ∼ bin(n, θ).

The density for y is
Pr(Y = y; θ) = n!

y!(n− y)!θ
y(1− θ)n−y.

yval <- 0:10
barplot(dbinom(yval, size=10, prob=1/6), names.arg=yval)
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Thus, if we know θ, then we can make all sorts of interesting computations based on the binomial model. E.g.
the mean and variance which are given by

E(Y ) = nθ, Var(Y ) = nθ(1− θ).

Or we can calculate the probability of seeing 0 sixes or the probability of seeing 5 or more sixes when rolling
a die 10 times.

For example, if the die is fair and θ = 1/6 we get

dbinom(0, size=10, prob=1/6) # Pr(0 sixes)

## [1] 0.1615056
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1-pbinom(4, size=10, prob=1/6) # Pr(5 or more sixes)

## [1] 0.01546197

A moment estimate

In practice θ is unknown and must be estimated from data. Intuition says that θ should be estimated as

θ̂ = y/n = 3/10 = 0.3.

It is useful to write θ̂(y) = y/n to emphasize the dependence on data.

For the corresponding random variable θ̂(Y ) = Y/n,

E(Y/n) = θ, Var(Y/n) = 1
n2nθ(1− θ) = θ(1− θ)/n.

Hence θ̂(Y ) has the correct mean value (unbiased) and the variance of θ̂(Y ) goes to 0 when n→∞ (consistent).

To calculate the variance, we plug in the estimate and find

Var(Y/n) ≈ y

n
(1− y

n
)/n = 0.3× 0.7/10 = 0.021

I.e. the estimated standard deviation of the estimate (called std. error) is approximately
√

0.021 = 0.14.

The likelihood

When y = 3 is observed, then the binomial density is a function of θ, and it is called the likelihood function:

L(θ) = Prθ(Y = y) = n!
y!(n− y)!θ

y(1− θ)n−y ∝ θy(1− θ)n−y.

Hence, the log-likelihood is

l(θ) = logL(θ) = y log θ + (n− y) log(1− θ).

lik <- function(parm, y, n){parm^y * (1 - parm)^(n - y)}
loglik <- function(parm, y, n){y * log(parm) + (n - y) * log(1 - parm)}
n <- 10; y <- 3
curve(lik(x, y, n), main = "Likelihood")
abline(v = y/n, col = "red", lty = 2)
curve(loglik(x, y, n), main = "Log-likelihood", ylim = c(-20, -5))
abline(v = y/n, col = "red", lty = 2)
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The frequentist approach

From a frequentist perspective we want to find the “best” estimate of θ given data, and “best” is here the
value of θ that maximizes L(). The estimate is called the maximum likelihood estimate (MLE).

In practice it is usually easier to maximize l(θ) = logL(θ) instead of L(θ) because the log turns a product
into a sum, and sums are easier to differentiate than products.

The usual approach to maximizing l(θ) is to first differentiate l(θ) to obtain

S(θ) = l′(θ)

where S(θ) is called the score function. Next we solve the score equation S(θ) = 0 to obtain θ̂.

It is not hard to spot that the maximum of L() (and of l()) is at θ = y/n = 0.3, but it is informative to look
at the plots for different choices of n and y. This is left as an exercise.

Summary of frequentist approach

• When we have a statistical model (a probability distribution) and data, then we have the likelihood
(and the log-likelihood) functions.

• The maximum likelihood estimate (MLE) θ̂ is the value of θ that maximizes the likelihood function.
• The variance of the corresponding estimator is approximately minus the inverse of the second derivative

of the log likelihood evaluated at the MLE.

The Bayesian approach

If we take a Bayesian perspective then things change as explained in the main slides for this module:

The parameter θ is a random quantity on equal footing with Y

and we have to specifiy the prior
π(θ).

This is our belief about θ before seeing any data, and then given data y we get the posterior from the
likelihood via Bayes’ rule

π(θ|y) = π(y|θ)π(θ)
π(y) ,

3



where π(y|θ) is (proportional to) the likelihood we have specified previously and π(y) is the marginal
probability for the data y.
When data y is observed then π(y) above is just a number, which ensures that π(θ|y) is a density, i.e. that∫
π(θ|y)dθ = 1. We do often not calulate π(y) directly: We just use that π(θ|y) ∝ π(y|θ)π(θ)

A discrete prior

Example: Assume (to ease computations) that the only valid choices for θ are now .1, .3, .5, .7 and .9. Before
rolling the die we think the die has been rigged somehow and we take the prior to be

theta <- c(.1, .3, .5, .7, .9)
prior <- c(0.10, 0.15, 0.25, 0.30, 0.20)

Then we can calculate the likelihood and the posterior

n <- 10; y <- 3
likval <- lik(theta, y, n)
posterior <- likval * prior
posterior <- posterior / sum( posterior )
round(100*posterior, 3)

## [1] 7.381 51.470 37.675 3.473 0.002

The plot shows it all:

par(mfrow=c(1,3), mar = c(3, 3, 3, 0.5))
barplot(prior, main="prior", names.arg=theta, ylim = c(0, .55))
barplot(likval, main="likelihood", names.arg=theta)
barplot(posterior, main="posterior", names.arg=theta, ylim = c(0, .55))
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We can compute e.g. the prior and posterior means:

sum(theta * prior)

## [1] 0.57
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sum(theta * posterior)

## [1] 0.374492

And corresponding variances (uncertanties before and after seeing data).

sum(theta^2 * prior) - sum(theta * prior)^2

## [1] 0.0611

sum(theta^2 * posterior) - sum(theta * posterior)^2

## [1] 0.01803762
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