Bayesian statistics, simulation and software

Module 1: Course intro and probability brush-up

Jesper Møller and Ege Rubak
Department of Mathematical Sciences
Aalborg University

Bayesian Statistics, Simulations and Software

Course outline

- Course consists of 12 half-days - modules of only 3 hours and 15 minutes each - of lectures and practicals. Expect you work hard on your own - otherwise it may be hard to pass! Solutions to (perhaps all) exercises are available, but use them modestly.
- To pass: Active participation in at least 10 of 12 modules plus a satisfactory solution of the exercise considered at the last module (where you will be informed about the details to whom and when the solution should be send).

Today

- 1. module: Probability brush-up.
- 2. module: Introduction to R software.

Probability brush-up

Setup: Perform an "experiment".
State space $\Omega=$ the set of all possible outcomes of the experiment.
Event: $A \subseteq \Omega$ - subset of the state space.
Example: Trip to the casino - what is the relevant state space?
Depends on the types of events...
Examples of events:

- At least three wins on "even" out of five trials: $\Omega=$?? (Yes, $\Omega=\{\text { even, not even }\}^{5}$.)
- Temperature inside the casino at noon $\in[25,26]$. (Maybe $\Omega=[18,30]$ (degrees in C).)

Probability

Notation: Probability of an event A is denoted $P(A)$. Basic properties:

- $0 \leq P(A) \leq 1$.
- $P(\Omega)=1$.

■ If A_{1}, A_{2}, \ldots are pairwise disjoint events $\left(A_{i} \cap A_{j}=\emptyset\right.$ for $\left.i \neq j\right)$, then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

Consequences:

■ A^{C} denotes A^{\prime} 's complement, i.e. $A \cap A^{C}=\emptyset$ and $\Omega=A \cup A^{C}$. So $P(A)+P\left(A^{C}\right)=P\left(A \cup A^{C}\right)=1$ and hence

$$
P\left(A^{C}\right)=1-P(A)
$$

■ For any events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

Example: A fair coin is tossed 10 times. What is the probability of any outcome?
Answer: 2^{-10} since all 2^{10} possible outcomes are equally likely.
What is the probability of at least one head?
Answer: $1-P($ all tail $)=1-2^{-10}$.
What is the probability of at least one head and at least one tail?
Answer: P (at least one head $)+P($ at least one tail $)]-$ $P($ at least one head or at least one tail $)=2\left[1-2^{-10}\right]-1=1-2^{-9}$.
Note that $\Omega=\{\text { head, tail }\}^{10}$ but we didn't explicitly state that... often we just do probability calculations without stating the state space.

Law of total probability

Breaks a probability into a sum of probabilities...: For any events A and B,

$$
P(A)=P(B \cap A)+P\left(B^{C} \cap A\right) .
$$

Extension: Split Ω into pairwise disjoint sets

$$
B_{1}, B_{2}, \ldots,
$$

that is $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$, and $\Omega=\cup_{i=1}^{\infty} B_{i}$. Consider event

$$
A=\left(B_{1} \cap A\right) \cup\left(B_{2} \cap A\right) \cup \cdots=\bigcup_{n=1}^{\infty}\left(B_{n} \cap A\right) .
$$

Then $\left(B_{i} \cap A\right) \cap\left(B_{j} \cap A\right)=\emptyset$ for $i \neq j$, so

$$
P(A)=\sum_{n=1}^{\infty} P\left(B_{n} \cap A\right) .
$$

Conditional probability

For events $A, B \subseteq \Omega$ with $P(B)>0$, the conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

Can be rewritten as

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

and so we obtain...

Bayes' Theorem

Bayes' theorem

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)} .
$$

Notice that we have "reversed" the conditioning.
Since

$$
\begin{aligned}
P(B) & =P(A \cap B)+P\left(A^{C} \cap B\right) \\
& =P(A) P(B \mid A)+P\left(A^{C}\right) P\left(B \mid A^{C}\right)
\end{aligned}
$$

we can reformulate Bayes' theorem as

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)} .
$$

Example: Test for a rare disease

Events: $I=$ infected
$Z=$ positive test $\quad Z^{C}=$ negative test

Known:

- $P(I)=0.1 \%$
- $P(Z \mid I)=92 \% \quad$ (true positive)
- $P\left(Z \mid I^{C}\right)=4 \% \quad$ (false positive)

Question:
■ Given a positive test, what is the probability of having the disease? It is $P(I \mid Z) \approx 2.5 \%$ (which is far from $P(Z \mid I)$) because

$$
P(I \mid Z)=\frac{P(Z \mid I) P(I)}{P(Z \mid I) P(I)+P\left(Z \mid I^{C}\right) P\left(I^{C}\right)}=\frac{0.92 \times 0.001}{0.92 \times 0.001+0.04 \times(1-0.001)}
$$

Independence

Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B) .
$$

Consequences:

- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)$ provided $P(B)>0$.
- $P(B \mid A)=P(B)$ provided $P(A)>0$.
- A and B^{C} are independent.
- A^{C} and B are independent.
- A^{C} and B^{C} are independent.

Example:

Events: $I=$ infected
$Z=$ positive test $\quad Z^{C}=$ negative test

Known probabilities:

- $P(I)=p \in(0,1)$
- $P(Z \mid I)=q \quad$ (true positive)

■ $P\left(Z \mid I^{C}\right)=r \quad$ (false positive)
Fact: Z and I are independent if and and only if $P(Z)=q=r$. However, as we want q to be much larger than r, there will be dependence.

Random variable

Definition: A random variable (RV) is a function X from the state space Ω to the real numbers \mathbb{R} (i.e. $X: \Omega \mapsto \mathbb{R}$).

Definition: Its distribution function

$$
F(x)=P(X \leq x), \quad x \in \mathbb{R},
$$

is a non-decreasing function with $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$.

Discrete random variable

Definition: A discrete RV takes countably many values and has a probability mass function (pmf) $\pi(x)$:
■ $\pi(x)=P(X=x) \geq 0$ for $x \in \mathbb{R}$ (or just $x \in X(\Omega)$),
$\square \sum_{x} \pi(x)=1$ (where $\sum_{x} \ldots$ means $\sum_{x \in \boldsymbol{X}(\Omega)} \ldots$).
Then

$$
F(x)=\sum_{y \leq x} \pi(y)
$$

(where $\sum_{y \leq x} \ldots$ means $\sum_{y \in \boldsymbol{X}(\Omega): y \leq x} \ldots$) is a step function.

Example: Binomial distribution

A discrete RV X follows a binomial distribution with parameters p and $n(0 \leq p \leq 1$ and $n \in\{1,2,3, \ldots\})$ if

$$
\pi(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x \in\{0,1,2, \ldots, n\}
$$

where

$$
\binom{n}{x}=\frac{n!}{x!(n-x)!}, \quad n!=1 \cdot 2 \cdot 3 \cdots n .
$$

Notation: $X \sim B(n, p)$. Interpretation:

- Perform n independent experiments, each with outcomes "success" or "failure".
- $P($ "success" $)=p$ for all experiments.
- Let $X=$ number of successes.
- Then $X \sim B(n, p)$.

Expectation and variance of RV

Definition: The expectation (or mean value) of a discrete RV is $\mu=E[X]=\sum_{x} x \pi(x)$.
Properties:

- $E[h(X)]=\sum_{x} h(x) \pi(x)$ for functions h.

■ $E[a+b X]=a+b E[X]$ for numbers a and b.
Definition: The variance of a discrete RV is

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}[X] & =E\left[(X-\mu)^{2}\right] \\
& =\sum_{x}(x-\mu)^{2} \pi(x)=E\left[X^{2}\right]-(E[X])^{2} .
\end{aligned}
$$

Property: $\operatorname{Var}(a+b X)=b^{2} \operatorname{Var}(X)$ for numbers a and b.
Example: Assume $X \sim B(n, p)$:

- $E[X]=n p$.
- $\operatorname{Var}(X)=n p(1-p)$.

Continuous random variable

A RV X with a continuous distribution function is called a continuous $\mathbf{R V}$ - this implies $P(X=x)=0$ for all $x \in \mathbb{R}$. It is usually specified by a probability density function (pdf) π, that is,

$$
\pi(x) \geq 0 \quad \text { and } \quad F(x)=\int_{-\infty}^{x} \pi(y) d y \quad \text { for all } x \in \mathbb{R} .
$$

Thus $\pi=F^{\prime}$ and
■ $P(a \leq X \leq b)=\int_{a}^{b} \pi(x) d x$ for all numbers $a \leq b$.
Expected value of continuous RV:

- $\mu=E[X]=\int_{-\infty}^{\infty} x \pi(x) d x$.
- $E[h(X)]=\int_{-\infty}^{\infty} h(x) \pi(x) d x$.

Variance of continuous RV:

- $\sigma^{2}=\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=\int(x-\mu)^{2} \pi(x) d x=E\left[X^{2}\right]-\mu^{2}$.

Remarks

For simplicity we call both a pmf and a pdf for a density (it will always be clear whether we consider the density of a discrete or a continuous RV). Important special case: a probability can be expressed as an expectation. For example, if $-\infty \leq a \leq b \leq \infty$,

$$
E[1(a \leq X \leq b)]=P(a \leq X \leq b)
$$

where $1(\cdot)$ is the indicator function.

Example: Normal distribution

A RV X follows a normal distribution with mean μ and precision τ if it has density/pdf

$$
\pi(x)=\sqrt{\frac{\tau}{2 \pi}} \exp \left(-\frac{\tau(x-\mu)^{2}}{2}\right), \quad x \in \mathbb{R}
$$

Notation: $X \sim \mathcal{N}(\mu, \tau)$.
Note: X is a continuous $\mathrm{RV}, \mu \in \mathbb{R}$, and $\tau=\frac{1}{\operatorname{Var}(X)}>0$.

Two (or more) continuous RVs

Let X and Y be continuous RVs with joint pdf/density

$$
\pi(x, y) \geq 0
$$

meaning that $P((X, Y) \in A)=\iint_{A} \pi(x, y) d x d y$ for any $A \subseteq \mathbb{R}^{2}$.
Let $\pi_{X}(x)$ and $\pi_{Y}(y)$ be the (marginal) densities for X and Y, respectively; e.g.

$$
\pi_{X}(x)=\int_{-\infty}^{\infty} \pi(x, y) d y
$$

We have

$$
E h(X, Y)=\iint h(x, y) \pi(x, y) d x d y
$$

for any real function h (provided the mean exists). For any real numbers a and b,

$$
E[a X+b Y]=a E X+b E Y
$$

Covariance:

$$
\operatorname{Cov}(X, Y)=E[(X-E X)(Y-E Y)]=E(X Y)-E X E Y
$$

Conditional densities and independence of continuous RVs

The conditional pdf/density is

$$
\pi_{Y \mid X}(y \mid x)=\frac{\pi(x, y)}{\pi_{X}(x)} \quad \text { if } \pi_{X}(x)>0
$$

Definition: X and Y are independent if and only if

$$
\pi(x, y)=\pi_{X}(x) \pi_{Y}(y), \quad x, y \in \mathbb{R}
$$

or equivalently

$$
\pi_{Y \mid X}(y \mid x)=\pi_{Y}(y) \quad \text { whenever } \pi_{X}(x)>0
$$

Independence implies

$$
\operatorname{Cov}(X, Y)=0, \quad \operatorname{Var}(X+Y)=\operatorname{Var} X+\operatorname{Var} Y
$$

Example: Independent normals

Assume $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{N}(\mu, \tau)$ (iid $=$ independent and identically distributed). Then the joint pdf/density is

$$
\begin{aligned}
\pi\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \sqrt{\frac{\tau}{2 \pi}} \exp \left(-\frac{1}{2} \tau\left(x_{i}-\mu\right)^{2}\right) \\
& =\left(\frac{\tau}{2 \pi}\right)^{\frac{n}{2}} \exp \left(-\frac{1}{2} \tau \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right)
\end{aligned}
$$

Similar exposition if we consider independent discrete RVs... Or when considering discrete and continuous RVs together...

