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Course outline

m Course consists of 12 half-days — modules of only 3 hours and 15
minutes each — of lectures and practicals. Expect you work hard on
your own — otherwise it may be hard to pass! Solutions to (perhaps
all) exercises are available, but use them modestly.

m To pass: Active participation in at least 10 of 12 modules plus a
satisfactory solution of the exercise considered at the last module
(where you will be informed about the details to whom and when
the solution should be send).

Today

m 1. module: Probability brush-up.
® 2. module: Introduction to R software.
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Setup: Perform an "experiment”.

State space () = the set of all possible outcomes of the experiment.
Event: A C () — subset of the state space.

Example: Trip to the casino — what is the relevant state space?
Depends on the types of events...

Examples of events:

B At least three wins on "even”out of five trials: =77 (VYes,
Q2 = {even, not even}®.)

m Temperature inside the casino at noon € [25,26]. (Maybe
Q = [18,30] (degrees in C).)
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Notation: Probability of an event A is denoted P(A). Basic properties:

mE0<PA<LL
mP(Q)=1
m If Ay, Ay, ... are pairwise disjoint events (A; N A; = 0 for ¢ # j),
then
P (U An> = ZP(An).
n=1 n=1
Consequences:

m A denotes A's complement, i.e. ANA® = and Q = AU A®. So
P(A) 4+ P(A9) = P(AU A%) =1 and hence

P(A®) =1-P(A).

m For any events A and B,
P(AUB)=P(A)+ P(B)— P(ANB).



Example: A fair coin is tossed 10 times. What is the probability of any
outcome?

Answer: 2719 since all 210 possible outcomes are equally likely.
What is the probability of at least one head?

Answer: 1 — P(all tail) =1 — 2719,

What is the probability of at least one head and at least one tail?

Answer: P(at least one head) + P(at least one tail)] —
P(at least one head or at least one tail) = 2[1 —2710] —1=1-279

Note that 2 = {head, tail}'° but we didn't explicitly state that... often
we just do probability calculations without stating the state space.
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Breaks a probability into a sum of probabilities...: For any events A and
B,
P(A) = P(BNA)+ P(B°n A).

Extension: Split ) into pairwise disjoint sets
Bl; B27 RN

that is B, N B; = () for i # j, and Q = U2, B;. Consider event
oo
A=(BiNA)U(BNAU-- =] (B.NA).
n=1
Then (BZOA)D(BJQA) :@ fori;éj, SO

:iPB NnA

n=1
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For events A, B C Q with P(B) > 0, the conditional probability of A
given B is

P(AN B)

P(AIB) = =55

Can be rewritten as
P(ANB)=P(A|B)P(B) = P(B|A)P(A)

and so we obtain...
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Bayes’ theorem

P(ANB)  P(BJA)P(A)
PAIB) = =5 =~ PB)

Notice that we have “reversed” the conditioning.
Since
P(B) = P(ANB) + P(A° N B)
= P(A)P(B|A) + P(A°)P(B|AY)

we can reformulate Bayes’' theorem as

P(B|A)P(A)
(BIA)P(A) + P(B|AC)P(AC)

P(AIB) = &
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Events: I=infected I€=uninfected

Z=positive test Z¢ =negative test
Known:
] P(I) = 1%
P(Z|I) = (true positive)
P(Z|I C) %  (false positive)
Questlon.

m Given a positive test, what is the probability of having the disease?
Itis P(I|Z) ~ 2.5% (which is far from P(Z|I)) because

P(Z|I)P(I) B 0.92 x 0.001

P(1|Z) = P(Z|I)P(I) + P(Z|IC)P(I€) ~ 0.92 x 0.001 4 0.04 x (1 — 0.001)
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Two events A and B are independent if and only if

P(ANB) = P(A)P(B).

Consequences:
A A .
P(A|B) = Z52) = P — P(A) provided P(B) > 0.
P(B|A) = P(B) provided P(A) > 0.
A and B¢ are independent.
A% and B are independent.

A and B¢ are independent.
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Example:
Events: I=infected I€ =uninfected

Z=positive test 7€ =negative test
Known probabilities:
m P(I)=pe(0,1)
m P(Z|I)=q (true positive)
m P(Z|I¢) =r (false positive)
Fact: Z and I are independent if and and only if P(Z) = g = r. However,
as we want ¢ to be much larger than r, there will be dependence.

Bayesian statistics, simulation and software Jesper Mgller and Ege Rubak



Definition: A random variable (RV) is a function X from the state
space (2 to the real numbers R (i.e. X : Q — R).

Definition: Its distribution function

F(z)=P(X <z), zeR,

is a non-decreasing function with lim,_, ., F(x) = 0 and
lim, o F(z) =1.
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Definition: A discrete RV takes countably many values and has a
probability mass function (pmf) m(x):

B r(z)=P(X =x)>0forxz R (or just z € X(Q)),
m ), m(x) =1 (where 3 ... means 3} x(q)---)-

Then
F(z) =Y 7(y)

y<z

(where - ... means }_ -y (q).y<, ---) is a step function.
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A discrete RV X follows a binomial distribution with parameters p and
n(0<p<landne{1,2,3,...1})if

m(z) = <Z>pz(l —p)" ", 2€{0,1,2,...,n},

where

Notation: X ~ B(n,p).
Interpretation:

m Perform n independent experiments, each with outcomes “success”
or “failure”.

B P(“success”) = p for all experiments.
m Let X = number of successes.
®m Then X ~ B(n,p).
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Definition: The expectation (or mean value) of a discrete RV is
j=EX] =Y, an().
Properties:
m E[h(X)] =", h(z)n(x) for functions h.
B Ela+bX] = a+ bE[X] for numbers a and b.
Definition: The variance of a discrete RV is

o? = Var[X] = E[(X — p)?]
=" (@ - w?a(z) = E[X? — (BIX])*.

Property: Var(a + bX) = b*Var(X) for numbers a and b.
Example: Assume X ~ B(n,p):

B E[X] =np.

B Var(X) =np(1 —p).
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A RV X with a continuous distribution function is called a continuous
RV - this implies P(X = z) = 0 for all x € R. It is usually specified by a
probability density function (pdf) 7, that is,

x

m(x) >0 and F(z)= / w(y)dy for all x € R.

Thus m = F’ and

BPa<X<b= ffﬂ(x)dx for all numbers a <.
Expected value of continuous RV:

B u=FE[X]= ffooo z7(z)dz.

B Eh(X)] = ffooo h(z)m(z)dz.
Variance of continuous RV:

w0 =Var(X) = B[(X - p)?’] = [(z — p)*m(2)de = E[X?] — p2.
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For simplicity we call both a pmf and a pdf for a density (it will always be
clear whether we consider the density of a discrete or a continuous RV).

Important special case: a probability can be expressed as an
expectation. For example, if —oo < a < b < o0,

Ell(a < X <b)]=Pla< X <b)

where 1(-) is the indicator function.
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A RV X follows a normal distribution with mean . and precision 7 if
it has density/pdf

m(z) = lﬂexp <_W> , z€eR

Notation: X ~ N (p, 7).
Note: X is a continuous RV, 1 € R, and 7 = Va%(x) > 0.
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Let X and Y be continuous RVs with joint pdf/density

m(x,y) >0

meaning that P ((X,Y) = [[,7(x,y)dxdy for any A C R?.
Let mx (x) and 7y (y) be the (margmal) densities for X and Y,
respectively; e.g.

nx) = [ w(wody

—00

En(X,Y) ://h(x,y)ﬂ(a:,y)dxdy

for any real function h (provided the mean exists). For any real numbers
a and b,

We have

ElaX +bY] = aEX + bEY.

Covariance:
Cov(X,Y)=E[(X —EX)(Y - EY)|=E(XY)- EXEY.
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The conditional pdf/density is

Ty x (ylz) = Z(X(I) if Tx(z) > 0.

Definition: X and Y are independent if and only if
m(z,y) = nx(@)7y (y), =,y €R,
or equivalently
my|x (ylz) = my (y) whenever mx (x) > 0.
Independence implies

Cow(X,Y)=0, Var(X+Y)=VarX + VarY.
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Assume X1, Xo,..., X, “"-\?N(,U/,T) (¢d = independent and identically

distributed). Then the joint pdf/density is

- T 1
m(T1, T2, Tn) = H gexp <—27'(50z‘ - ﬂ)2>
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Similar exposition if we consider independent discrete RVs...

Or when considering discrete and continuous RVs together...
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