Exercises for module 11 A mixture model and slice sampling

Exercise 1: Artificial mixture data

- 1. Read in the dataset simmix.csv from the website. It is a data.frame which contains 500 observations of a varible x which was artificially generated.
- 2. For $k = 1, 2, ..., let \lambda = (\lambda_1, ..., \lambda_k)$ and $\mu = (\mu_1, ..., \mu_k)$ and consider a k-component normal mixture density

$$\pi(y_i|\lambda,\theta) = \sum_{j=1}^k \lambda_j \pi_j(y_i|\mu_j)$$

where $\lambda \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_k)$, $\pi_j(y_i|\mu_j) \sim \mathcal{N}(\mu_j, 1)$ and $\mu_j \sim \mathcal{N}(\mu_{j,0}, \tau_{j,0})$. For any given values of k and $\alpha_j, \mu_{j,0}, \tau_{j,0}$ with $j = 1, \ldots, k$, write a code for a Gibbs sampler which simulates from the posterior density $\pi(\lambda, \mu, z|y)$, where using the notation from the lecture, $z = (z_1, \ldots, z_{500})$ is the vector of dummy variables.

- 3. With k = 4, discuss
 - how you would specify the values of $\alpha_j, \mu_{j,0}, \tau_{j,0}$ with j = 1, 2, 3, 4,
 - results obtained by a Bayesian analysis using the Gibbs sampler.
- 4. There is no simple way of telling what the "correct" number of mixture components is. One suggestion is to assume a maximum number of components H and let k = H and $\alpha_1 = \ldots = \alpha_k = 1/H$.
 - For instance, then one may study the posterior distribution of the means (μ_1, \ldots, μ_k) ; what would you conclude if some of the means tend to be close to each other?
 - Apply the approach for the 500 simulated data points when k = H = 4.