Exercises for module 7
 Markov chain Monte Carlo methods

Exercise 1

Consider the Metropolis-Hasthings (MH) algorithm, assuming the target density is a standard normal:

$$
\pi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)
$$

Furthermore, assume that the proposals are normally distributed centred at the current value and with standard deviation σ :

$$
q(x, y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-x)^{2}\right)
$$

1. Determine the acceptance probability.

The following is a pseudo code for implementing the MH algorithm:

```
choose inital value \(x^{(0)}\)
for \(i=1, \ldots, n\) do
    generate proposal \(y \sim q\left(x^{(i-1)}, y\right)\)
    generate \(u \sim \operatorname{Unif}[0,1]\)
    calculate \(H\left(x^{(i-1)}, y\right)=\left(\pi(y) q\left(y, x^{(i-1)}\right)\right) /\left(\pi\left(x^{(i-1)}\right) q\left(x^{(i-1)}, y\right)\right)\)
    if \(u<H\left(x^{(i-1)}, y\right)\) then
        set \(x^{(i)}=y\)
    else
        set \(x^{(i)}=x^{(i-1)}\)
    end
end
```

2. Argue why in the MH algorithm the proposal y is accepted with probability $\min \{1, H(x, y)\}$.
3. Implement the code in R in such a way that it returns a realisation of the Markov chain. Make a trace plot and a histogram of the output. How large does n (i.e. the length of the chain) have to be for the histogram to look like a standard normal distribution. What effect does the value of σ have?
4. Use your code to estimate the probability $P(X \leq-1)$. The correct value is obtain in R by pnorm (-1).
5. Assume now that the proposal kernel is

$$
q(x, y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right)
$$

What is the interpretation of this proposal kernel? Find the resulting acceptance probability.

