Module 7: Supplementary exercises

Exercise: Potential rejection sampling problems

First try to answer the following questions without using the computer - then reuse the code from the supplementary slides to check your answer:

- Suppose we could not easily determine M and hence had to make a conservative choice; say $M=100$ or $\mathrm{M}=500$ in this context.

1. Which effect will that have on the number of accepted samples?
2. How would you have to compensate for a too large value of M if you want a given number of samples from the target distribution?

- What happens if you do not choose M large enough (e.g. $\mathrm{M}=10$ in our example)?
- What would be the effect of using a uniform proposal distribution on $[-10,10]$?
- What happens if the proposal distribution is an standard normal distribution (i.e. mean zero and standard deviation 1? Hints:

1. You can use dnorm() for the normal density.
2. You may have to create a sequence $x<-\operatorname{seq}(-4,4$, by $=0.01)$ to numerically evaluate the bound M relating $\mathrm{f} 0(\mathrm{x})$ and dnorm (x).

Exercise: Improving the proposal distribution

If $f(x), x \in[0,1]$ is a pdf on $[0,1]$ then for $a>0,1 / a \cdot f(x / a), x \in[0, a]$ is a pdf on $[0, a]$. Furthermore, a pdf on $[b, a+b]$ can be obtained by simple translation.

- Based on these facts how can a beta distribution $\operatorname{Be}(\alpha, \beta)$ indirectly be used as the proposal distribution for our example? -Implement the rejection sampling algorithm using $\mathrm{Be}(2.5,3.5)$ transformed to [-4.1, 4.1] (but with M determined on $[-4,4]$).
- Check with a histogram that you are sampling the correct distribution.
- Find the acceptance rate.

