
Solutions for Module 3 and 4

1. Assume a priori that p ∼ Be(α, β). Then we need to solve

E[p] =
α

α+ β
=

1

3
and V ar[p] =

αβ

(α+ β)2(α+ β + 1)
=

1

32
.

From the first equation we obtain β = 2α. Inserting this in the second equation and
isolating α gives α = 55

27 , which in turn implies that β = 110
27 . Observing x = 8

success in n = 20 trials, it follows from Section 2.1 that p|x ∼ Be(x+ α, n− x+ β) =
Be(8 + 55

27 , 12 +
110
27 ).

2. Observing x1 successes in n1 trials gives posterior p|x1 ∼ Be(α1, β1), where α1 = x1+α
and β1 = n1 − x1 + β. Now use this as our prior, and assume we observe a further
x2 successes in the next n2 trials. The posterior is then p|x1, x2 ∼ Be(α2, β2) where
α2 = x2 + α1 = x1 + x2 + α and β2 = n2 − x2 + β1 = n1 + n2 − x1 − x2 + β.
Notice that α1 + β1 = n1 + α + β, α2 + β2 = n1 + n2 + α + β and so on if we
repeat everything. Therefore, in some sense, we can interpret α + β as representing
the number of experiments that our prior knowledge corresponds to.

3. (a) A priori we assume λ ∼ Gamma(α, β), i.e.

π(λ) =
λα−1e−λ/β

Γ(α)βα
.

The posterior density is then

π(λ|x) ∝ π(x|λ)π(λ)

=
e−λλx

x!

λα−1e−λ/β

Γ(α)βα

∝ λx+α−1e−λ(1+1/β)

and so λ|x ∼ Gamma(x+ α, β/(1 + β)).

Remark: A more common situation is when x ∼ Pois(λt), which corresponds to x
being the random number of events in a Poisson process with rate λ on an interval
of length t. In this case the posterior is λ|x ∼ Gamma(x + α, β/(1 + tβ)). Here the
posterior mean is

E[λ|x] =
(x+ α)β

1 + tβ
=

xβ

1 + tβ
+

αβ

1 + tβ
.

Now, as t increases, E[λ|x] will tend towards x/t which is the usual frequentist esti-
mator.

(b) If we let x1, . . . , x6 be the six observations and set x = x1 + . . . + x6, we ob-
tain the likelihood

π(x1, . . . , x6|λ) =
6
∏

i=1

π(xi|λ) =
6
∏

i=1

exp(−λ)
λxi

xi!
∝ λ

∑
i
xi exp(−6λ) = λx exp(−6λ).

Then along similar lines as in (a) it is seen that λ|x ∼ Gamma(x+ α, β/(1 + 6β)) (in
agreement with the remark above!). Finally, a priori we want αβ = 3 and αβ2 = 4,
i.e. β = 4/3 and α = 9/4.

4. Let x = (x1, x2, . . . , xn) denote the vector of observations. The posterior density for
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the mean is

π(µ|x) ∝ π(x|µ)π(µ)

=
( τ

2π

)
n

2

exp
(

−
1

2
τ

n
∑

i=1

(xi − µ)2
)

√

τ0
2π

exp
(

−
1

2
τ0(µ− µ0)

2
)

∝ exp
(

−
1

2
τ

n
∑

i=1

µ2 + τµ

n
∑

i=1

xi −
1

2
τ0µ

2 + τ0µ0µ
)

= exp
(

−
1

2
(τ0 + nτ)µ2 + (τ

n
∑

i=1

xi + τ0µ0)µ
)

= exp(−
1

2
τ1µ

2 + τ1µ1µ).

Comparing this to equation (2) we see that µ|x ∼ N(µ1, τ1), where

τ1 = τ0 + nτ and µ1 =
τ1µ1

τ1
=

τ
∑n

i=1 xi + τ0µ0

τ0 + nτ
=

τnx̄+ τ0µ0

τ0 + nτ
.

The posterior density for the precision is

π(τ |x) ∝ π(x|τ)π(τ)

=
( τ

2π

)
n

2

exp
(

−
1

2
τ

n
∑

i=1

(xi − µ)2
)τα−1e−τ/β

Γ(α)βα

∝ τ
n

2
+α−1 exp

(

− τ
(1

2

n
∑

i=1

(xi − µ)2 +
1

β

))

Comparing this to the density of a gamma distributed random variable we see that
τ |x ∼ Gamma(α1, β1), where β1 denotes the scale parameter and

α1 =
n

2
+ α and β1 =

1
1
2

∑n
i=1(xi − µ)2 + 1

β

.

5. (a) A priori µ is drawn from N (0, 1) with probability 1/3, and else it is drawn from
N (1, 1).

(b) Follows by a straightforward calculation using (2).

(c) A posteriori µ is drawn from N ( τx
1+τ , 1 + τ) with probability

exp
(

1
2
(τx)2

1+τ

)

exp
(

1
2
(τx)2

1+τ

)

+ 2 exp
(

1
2
(1+τx)2

1+τ − 1
2

) ,

and else it is drawn from N ( 1+τx
1+τ , 1 + τ). So the prior and posterior distributions are

conjugate within the family of mixture distributions given by two normal distributions.
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