Solutions for Module 3 and 4

1. Assume a priori that p ~ Be(a, ). Then we need to solve
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From the first equation We obtain 8 = 2«. Inserting this in the second equation and
isolating o gives a = 27, which in turn implies that g = 12170. Observing x = 8
success in n = 20 trials, it follows from Section 2.1 that p|x ~ Be(z +a,n —z + ) =

Be(8+ 22,12 + 19),

2. Observing x; successes in n; trials gives posterior p|x; ~ Be(aq, 1), where a1 = z1+«
and 81 = ny — x1 + 8. Now use this as our prior, and assume we observe a further
Zo successes in the next ng trials. The posterior is then p|xi,xo ~ Be(asg, 82) where
ay = 22 +a; =2y +xat+aand By = ng —x2+ B1 = ng +ng — 1 — 22 + B
Notice that a3 + 1 = n1 +a+ B, as + B2 = n1 + ne + a + B and so on if we
repeat everything. Therefore, in some sense, we can interpret o 4+ (§ as representing
the number of experiments that our prior knowledge corresponds to.
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3. (a) A priori we assume A ~ Gamma(a, §3), i.e.
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The posterior density is then
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and so A|x ~ Gamma(z + o, 8/(1 4+ 3)).

Remark: A more common situation is when z ~ Pois(At), which corresponds to x
being the random number of events in a Poisson process with rate A on an interval
of length ¢. In this case the posterior is A\|z ~ Gamma(z + «, 5/(1 + t3)). Here the
posterior mean is
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Now, as t increases, E[A|z] will tend towards x/t which is the usual frequentist esti-
mator.

(b) If we let x1,...,x6 be the six observations and set * = x1 + ... + x5, we ob-
tain the likelihood
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W(xl,...,x6|)\):H (z;|A\) = Hexp

i=1

o< AZi Tiexp(—6A) = A% exp(—6)).

Then along similar lines as in (a) it is seen that A|z ~ Gamma(z + «, 8/(1 +68)) (i (
agreement with the remark above!). Finally, a priori we want a3 = 3 and af3? = 4,
ie. £ =4/3 and o = 9/4.

4. Let = (21,29, ...,2,) denote the vector of observations. The posterior density for



the mean is
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Comparing this to equation (2) we see that u|lz ~ N(u1,71), where
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The posterior density for the precision is
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Comparing this to the density of a gamma distributed random variable we see that
7|z ~ Gamma(ay, f1), where 81 denotes the scale parameter and
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. (a) A priori p is drawn from A(0,1) with probability 1/3, and else it is drawn from
N(1,1).

(b) Follows by a straightforward calculation using (2).

(c) A posteriori y is drawn from N (%, 1+ 7) with probability
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and else it is drawn from N/( lfff ,1+ 7). So the prior and posterior distributions are

conjugate within the family of mixture distributions given by two normal distributions.




