Solutions for Module 3 and 4

1. Assume a priori that $p \sim B e(\alpha, \beta)$. Then we need to solve

$$
E[p]=\frac{\alpha}{\alpha+\beta}=\frac{1}{3} \quad \text { and } \quad \operatorname{Var}[p]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}=\frac{1}{32}
$$

From the first equation we obtain $\beta=2 \alpha$. Inserting this in the second equation and isolating α gives $\alpha=\frac{55}{27}$, which in turn implies that $\beta=\frac{110}{27}$. Observing $x=8$ success in $n=20$ trials, it follows from Section 2.1 that $p \mid x \sim \operatorname{Be}(x+\alpha, n-x+\beta)=$ $B e\left(8+\frac{55}{27}, 12+\frac{110}{27}\right)$.
2. Observing x_{1} successes in n_{1} trials gives posterior $p \mid x_{1} \sim B e\left(\alpha_{1}, \beta_{1}\right)$, where $\alpha_{1}=x_{1}+\alpha$ and $\beta_{1}=n_{1}-x_{1}+\beta$. Now use this as our prior, and assume we observe a further x_{2} successes in the next n_{2} trials. The posterior is then $p \mid x_{1}, x_{2} \sim \operatorname{Be}\left(\alpha_{2}, \beta_{2}\right)$ where $\alpha_{2}=x_{2}+\alpha_{1}=x_{1}+x_{2}+\alpha$ and $\beta_{2}=n_{2}-x_{2}+\beta_{1}=n_{1}+n_{2}-x_{1}-x_{2}+\beta$. Notice that $\alpha_{1}+\beta_{1}=n_{1}+\alpha+\beta, \alpha_{2}+\beta_{2}=n_{1}+n_{2}+\alpha+\beta$ and so on if we repeat everything. Therefore, in some sense, we can interpret $\alpha+\beta$ as representing the number of experiments that our prior knowledge corresponds to.
3. (a) A priori we assume $\lambda \sim \operatorname{Gamma}(\alpha, \beta)$, i.e.

$$
\pi(\lambda)=\frac{\lambda^{\alpha-1} e^{-\lambda / \beta}}{\Gamma(\alpha) \beta^{\alpha}}
$$

The posterior density is then

$$
\begin{aligned}
\pi(\lambda \mid x) & \propto \pi(x \mid \lambda) \pi(\lambda) \\
& =\frac{e^{-\lambda} \lambda^{x}}{x!} \frac{\lambda^{\alpha-1} e^{-\lambda / \beta}}{\Gamma(\alpha) \beta^{\alpha}} \\
& \propto \lambda^{x+\alpha-1} e^{-\lambda(1+1 / \beta)}
\end{aligned}
$$

and so $\lambda \mid x \sim \operatorname{Gamma}(x+\alpha, \beta /(1+\beta))$.
Remark: A more common situation is when $x \sim \operatorname{Pois}(\lambda t)$, which corresponds to x being the random number of events in a Poisson process with rate λ on an interval of length t. In this case the posterior is $\lambda \mid x \sim \operatorname{Gamma}(x+\alpha, \beta /(1+t \beta))$. Here the posterior mean is

$$
E[\lambda \mid x]=\frac{(x+\alpha) \beta}{1+t \beta}=\frac{x \beta}{1+t \beta}+\frac{\alpha \beta}{1+t \beta} .
$$

Now, as t increases, $E[\lambda \mid x]$ will tend towards x / t which is the usual frequentist estimator.
(b) If we let x_{1}, \ldots, x_{6} be the six observations and set $x=x_{1}+\ldots+x_{6}$, we obtain the likelihood

$$
\pi\left(x_{1}, \ldots, x_{6} \mid \lambda\right)=\prod_{i=1}^{6} \pi\left(x_{i} \mid \lambda\right)=\prod_{i=1}^{6} \exp (-\lambda) \frac{\lambda^{x_{i}}}{x_{i}!} \propto \lambda^{\sum_{i} x_{i}} \exp (-6 \lambda)=\lambda^{x} \exp (-6 \lambda)
$$

Then along similar lines as in (a) it is seen that $\lambda \mid x \sim \operatorname{Gamma}(x+\alpha, \beta /(1+6 \beta))$ (in agreement with the remark above!). Finally, a priori we want $\alpha \beta=3$ and $\alpha \beta^{2}=4$, i.e. $\beta=4 / 3$ and $\alpha=9 / 4$.
4. Let $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote the vector of observations. The posterior density for
the mean is

$$
\begin{aligned}
\pi(\mu \mid \underline{x}) & \propto \pi(\underline{x} \mid \mu) \pi(\mu) \\
& =\left(\frac{\tau}{2 \pi}\right)^{\frac{n}{2}} \exp \left(-\frac{1}{2} \tau \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) \sqrt{\frac{\tau_{0}}{2 \pi}} \exp \left(-\frac{1}{2} \tau_{0}\left(\mu-\mu_{0}\right)^{2}\right) \\
& \propto \exp \left(-\frac{1}{2} \tau \sum_{i=1}^{n} \mu^{2}+\tau \mu \sum_{i=1}^{n} x_{i}-\frac{1}{2} \tau_{0} \mu^{2}+\tau_{0} \mu_{0} \mu\right) \\
& =\exp \left(-\frac{1}{2}\left(\tau_{0}+n \tau\right) \mu^{2}+\left(\tau \sum_{i=1}^{n} x_{i}+\tau_{0} \mu_{0}\right) \mu\right) \\
& =\exp \left(-\frac{1}{2} \tau_{1} \mu^{2}+\tau_{1} \mu_{1} \mu\right) .
\end{aligned}
$$

Comparing this to equation (2) we see that $\mu \mid \underline{x} \sim N\left(\mu_{1}, \tau_{1}\right)$, where

$$
\tau_{1}=\tau_{0}+n \tau \quad \text { and } \quad \mu_{1}=\frac{\tau_{1} \mu_{1}}{\tau_{1}}=\frac{\tau \sum_{i=1}^{n} x_{i}+\tau_{0} \mu_{0}}{\tau_{0}+n \tau}=\frac{\tau n \bar{x}+\tau_{0} \mu_{0}}{\tau_{0}+n \tau}
$$

The posterior density for the precision is

$$
\begin{aligned}
\pi(\tau \mid \underline{x}) & \propto \pi(\underline{x} \mid \tau) \pi(\tau) \\
& =\left(\frac{\tau}{2 \pi}\right)^{\frac{n}{2}} \exp \left(-\frac{1}{2} \tau \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) \frac{\tau^{\alpha-1} e^{-\tau / \beta}}{\Gamma(\alpha) \beta^{\alpha}} \\
& \propto \tau^{\frac{n}{2}+\alpha-1} \exp \left(-\tau\left(\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}+\frac{1}{\beta}\right)\right)
\end{aligned}
$$

Comparing this to the density of a gamma distributed random variable we see that $\tau \mid \underline{x} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta_{1}\right)$, where β_{1} denotes the scale parameter and

$$
\alpha_{1}=\frac{n}{2}+\alpha \quad \text { and } \quad \beta_{1}=\frac{1}{\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}+\frac{1}{\beta}} .
$$

5. (a) A priori μ is drawn from $\mathcal{N}(0,1)$ with probability $1 / 3$, and else it is drawn from $\mathcal{N}(1,1)$.
(b) Follows by a straightforward calculation using (2).
(c) A posteriori μ is drawn from $\mathcal{N}\left(\frac{\tau x}{1+\tau}, 1+\tau\right)$ with probability

$$
\frac{\exp \left(\frac{1}{2} \frac{(\tau x)^{2}}{1+\tau}\right)}{\exp \left(\frac{1}{2} \frac{(\tau x)^{2}}{1+\tau}\right)+2 \exp \left(\frac{1}{2} \frac{(1+\tau x)^{2}}{1+\tau}-\frac{1}{2}\right)}
$$

and else it is drawn from $\mathcal{N}\left(\frac{1+\tau x}{1+\tau}, 1+\tau\right)$. So the prior and posterior distributions are conjugate within the family of mixture distributions given by two normal distributions.

