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1 The basics

The basic idea of Bayesian inference is to setup a full probability model for
both observed and unobserved quantities. Inference is then based on the so-
called posterior density — that is the conditional density of the unobserved
quantity conditional on the observed quantity.

Let y denote the observed quantity (the data) which we assume is a
realisation of a random variable Y . Assume further that the distribution of
Y depends on an unobserved quantity θ which we assume is a realisation of
another random variable Θ. More precisely we assume that Θ is distributed
according to the so-called prior density π(θ). Given Θ = θ we assume that
Y is distributed according to the so-called sampling/data density π(y|θ) —
sometimes also referred to as the likelihood. By the definition of conditional
densities, these assumption imply that the joint distribution of Y and Θ has
density

π(y, θ) = π(θ)π(y|θ).

The prior density should reflect our prior knowledge (or our prior uncertainty)
regarding Θ, i.e. our knowledge about Θ before we observe Y . The data
density should be chosen so that it is consistent with our knowledge about
the problem of interest.

From the definition of conditional densities we obtain the posterior density
of Θ:

π(θ|y) =
π(y, θ)

π(y)
=

π(θ)π(y|θ)

π(y)
. (1)

Notice that given the data Y = y the term π(y) is a constant and hence

π(θ|y) ∝ π(θ)π(y|θ)

is an unnormalised posterior density. The posterior density can be inter-
preted as our updated knowledge about Θ after having observed Y . Infer-
ence is typically based on reproducing all or parts of the posterior density
graphically (as graphs or contour plots). Another option is to report e.g.
posterior mean, mode, and quantiles. Notice that a central 95% posterior
interval (that is, the interval between the 2.5% and 97.5% quantiles in the
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posterior distribution) can directly be interpreted as containing θ with high
probability unlike the classical confidence intervals. It is however not always
trivial to obtain the posterior density — or even an approximation of it.

Classical Bayesian inference has been limited by the fact that to make a
posterior analysis feasible the prior should be chosen so that the resulting
posterior density can be recognised as the density of a known distribution.
Such prior distribution are called conjugated priors. This limitation has been
drastically reduced nowadays by a combination of Markov chain Monte Carlo
(MCMC) methods and an increase in available computing power.

2 Examples of Bayesian inference

2.1 Binomial likelihood

Assume that we have performed n independent experiments where each ex-
periment has probability p for success. Here p plays the role of the unknown
parameter θ in (1). Let x ∈ {0, 1, . . . , n} denote the random number of
successes. The number of successes follows a binomial distribution

x ∼ B(n, p)

that is

π(x|n, p) =

(

n

x

)

px(1− p)n−x.

For a Bayesian analysis we need to specify the prior distribution of p. It
turns out to be convenient to let a priori p follow a beta distribution with
shape parameters α and β:

p ∼ Be(α, β),

where the values of α and β are assumed to be known (more about this later).
So a priori p has probability density function (pdf),

π(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 for p ∈ [0, 1],

and E(p) = α
(α+β)

and V ar(p) = αβ
(α+β)2(α+β+1)

.
We obtain the posterior distribution as

π(p|x) ∝ π(x|p)π(p)

=

(

n

x

)

px(1− p)n−xΓ(α)Γ(β)

Γ(α + β)
pα−1(1− p)β−1

∝ px+α−1(1− p)n−x+β−1
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which we recognise as the unnormalised density of a beta distribution with
parameters x+ α and n− x+ β, i.e.

p|x ∼ Be(x+ α, n− x+ β).

Consequently, the posterior mean and variances are E(p|x) = x+α
n+α+β

and

V ar(p|x) = (x+α)(n−x+β)
(α+β+n)2(α+β+n+1)

.

For example, taking α = β = 1 we have a flat (uniform) prior with mean
1
2
and variance 1

12
, whilst the posterior distribution Be(x + 1, n − x + 1) is

more concentrated around its posterior mean (x + 1)/(n + 2), in particular

as n increases since then the posterior variance (x+1)(n−x+1)
(2+n)2(n+3)

decreases to 0.

2.2 Binomial likelihood: Placenta Previa data

In this applied example we consider the probability for a female birth given
a special condition called placenta previa. The number of female births
(x = 437) is the observed quantity, and the probability of a female birth
is the unobserved quantity p. This leads us to assume that the number of
observed female births (given p) is binomially distributed with parameter p,
where we assume that the total number of births n = 980 is known.

As in Section 2.1 we assume a Beta distribution as the prior for p. Follow-
ing calculations as in Section 2.1 we obtain a posterior for p which corresponds
to a beta distribution with parameters 437 + α and 543 + β. Regarding the
choice of α and β, if we are told the probability of a female birth in the
background population is 0.485, one option would be to select α and β so
that the prior mean is 0.485, i.e. that α/(α + β) = 0.485. Then, if we also
specify the value of α + β, we know the values of α and β.

In Bayesian statistics it is good practice to perform a so-called sensitivity
analysis to assess how sensitive the posterior distribution is to the choice of
prior. Table 1 contains the 2.5%, 50% and 97.5% quantiles for the posterior
distribution for a range of α and β values reparameterised as α/(α+ β) (the
prior mean) and α + β. Further, Figure 1 shows the prior and posterior
densities of p for the same values of α and β. Table 1 shows that except for
the last row the prior has little influence on the posterior distribution. Note
that the prior and posterior densities are quite different, again except the
last case, and even here the 95% posterior interval does not contain the prior
mean.

2.3 Normal likelihood

Usually a normal distribution is specified by its mean, µ, and variance, σ2.
Working with a normal distribution in a Bayesian setting it is in general more
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Quantiles
α

α+β
α + β 2.5% 50% 97.5%

0.5 2 0.415 0.446 0.477
0.485 5 0.415 0.446 0.477
0.485 10 0.415 0.446 0.477
0.485 20 0.416 0.447 0.478
0.485 100 0.420 0.450 0.479
0.485 200 0.424 0.453 0.481

Table 1: Prior parameters and corresponding posterior quantiles.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

α (α + β)=0.5 , α + β=2

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

α (α + β)=0.485 , α + β=5

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

α (α + β)=0.485 , α + β=10

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

α (α + β)=0.485 , α + β=20

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

α (α + β)=0.485 , α + β=100

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

α (α + β)=0.485 , α + β=200

Figure 1: Prior (solid line) and posterior (dashed line) densities for p.
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convenient to specify a normal distribution in terms of its mean, µ, and its
precision, τ = 1/σ2. A normal distributed random variable x with mean µ
and precision τ has pdf

π(x|µ, τ) =

√

τ

2π
exp

(

−
1

2
τ(x− µ)2

)

∝ exp
(

−
1

2
τx2 + τµx

)

, (2)

which we denote
x ∼ N(µ, τ).

First, assume we have a single observation x ∼ N(µ, τ) with known pre-
cision but unknown mean. Regarding the unknown mean we assume a priori
that the mean is normal, specifically µ ∼ N(µ0, τ0). Then the posterior
distribution of µ is given by

π(µ|x) ∝ π(x|µ)π(µ)

=

√

τ

2π
exp

(

−
1

2
τ(x− µ)2

)

√

τ0
2π

exp
(

−
1

2
τ0(µ− µ0)

2
)

∝ exp
(

−
1

2
(τ + τ0)µ

2 + (τx+ τ0µ0)µ
)

. (3)

Comparing (3) to (2) we see that this implies µ|x ∼ N(µ1, τ1), where

τ1 = τ + τ0 and µ1 =
1

τ1
(τx+ τ0µ0) =

τx+ τ0µ0

τ + τ0
,

where we notice that the posterior mean, µ1, is a weighted average of x and
µ0 with weights τ/(τ + τ0) and τ0/(τ + τ0), respectively.

Second, assume we have n independent observations x1, . . . , xn, where
xi ∼ N(µ, τ). Again assuming that τ is known and a priori µ ∼ N(µ0, τ0), it
follows that

µ|x1, . . . , xn ∼ N(µ1, τ1), (4)

where

τ1 = nτ + τ0 and µ1 =
1

τ1
(τ

n
∑

i=1

xi + τ0µ0) =
nτx̄+ τ0µ0

nτ + τ0
,

where x̄ = n−1
∑n

i=1 xi is the average of the n observations. Again we see
that the posterior mean is a weighted average of the observed mean and the
prior mean.
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We now consider the situation where the mean is known and the precision
is unknown. Assume that the precision is gamma distributed with shape
parameter α and scale parameter β, i.e.

π(τ |α, β) =
1

Γ(α)βα
τα−1e−τ/β,

which we denote τ ∼ Gamma(α, β). Recall that E(τ) = αβ and V ar(τ) =
αβ2. It can then be shown that the posterior distribution of τ is also gamma
distributed:

τ |x1, . . . , xn ∼ Gamma
(

n/2 + α,
(1

2

∑

i

(xi − µ)2 + 1/β
)

−1
)

. (5)

The posterior mean is now

E(τ |x1, . . . , xn) =
n
2
+ α

1
2

∑

i(xi − µ)2 + 1/β
=

n
2
+ αβ/β

n
2
σ̂2 + 1/β

,

where σ̂2 = 1
n

∑

(xi − µ)2 is the observed variance.

2.4 Conjugated priors

In the examples above the prior and posterior are distributions of the same
type. For a given likelihood l(θ|x) we say that Π is a conjugated family if the
posterior belongs to Π whenever the prior does. This definition is too broad
in general — in practice we are only interested in conjugated families which
consist of well known distributions.

2.5 Semi-conjugate priors

If both the mean and the variance are unknown we ideally want a joint
conjugate prior distribution. One alternative is to use a semi-conjugate prior:
We assume a priori that µ and τ are independent and µ ∼ N(µ0, τ0) and τ ∼
Gamma(α, β). It should be clear that the conditional posterior distribution
are of a known form, specifically µ|τ, x1, . . . , xn ∼ N(µ1, τ1) with µ1 and
τ1 as above and τ |µ, x1, . . . , xn is Gamma distributed as above. It is now
straightforward to sample the joint posterior (asymptotically) using a Gibbs
sampler, i.e. when we alternate to simulate from the conditional posterior
distribution of µ given τ and from the conditional posterior distribution of τ
given µ .
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2.6 Improper priors

Assume we want to perform Bayesian inference for observations from the
observation model π(x|θ) specified by a real valued parameter θ. In case
we have little or no prior information about the parameter θ we might be
tempted to use a flat prior π(θ) ∝ k. This is an example of an improper
prior because

∫

∞

−∞
π(θ)dθ = ∞.

3 Exercises

1. Consider the binomial example with a Beta prior distribution. Suppose
your prior beliefs about the probability p of success have mean 1/3 and
variance 1/32. What is the posterior distribution after having observed
8 successes in 20 trials?

2. Consider again the posterior distribution in the binomial example. As-
sume that the prior knowledge comes from previous experience with
the same experiment. Then how could you interpret α + β?

3. A random variable x is said to be Poisson distributed with rate λ > 0
if it has probability function

π(x) =

{

e−λλx

x!
if x ∈ N0

0 otherwise,

whereN0 = {0, 1, 2, 3, . . .} is the non-negative integers. This is denoted
x ∼ Pois(λ). If x ∼ Pois(λ) then E(x) = λ and V ar(x) = λ.

(a) Assume a priori that λ follows a gamma distribution with param-
eters α > 0 and β > 0. Determine the posterior distribution of λ
based on a single observation x ∼ Pois(λ).

(b) In an early draft for a new book on Bayesian statistics, the number
of misprints on the first six pages were

3, 4, 2, 1, 2, 3.

Assume that these observations are independent and come from a
Poisson distribution with rate λ. Based on experience with drafts
for other books we want a Gamma prior on λ with mean 3 and
variance 4. Find the posterior distribution for λ.

4. Show that the posterior distributions in Equations (4) and (5) are cor-
rect.
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5. Assume that we observe data x from a normal distribution with un-
known mean µ and known precision τ , and from previous experience a
suitable prior has density

π(µ) =
1

3
×

√

1

2π
exp

(

−
1

2
µ2

)

+
2

3
×

√

1

2π
exp

(

−
1

2
(µ− 1)2

)

(a) How would you generate a random realization from this prior den-
sity?

(b) Use Equation (2) to show that the posterior density is given by

π(µ|x) ∝ exp

(

1

2

(τx)2

1 + τ

)

exp

(

−
1

2
(1 + τ)

(

µ−
τx

1 + τ

)2
)

+ 2 exp

(

1

2

(1 + τx)2

1 + τ
−

1

2

)

exp

(

−
1

2
(1 + τ)

(

µ−
1 + τx

1 + τ

)2
)

.

(c) Consider how you generate a random realization from this pos-
terior and then argue why the prior and posterior are conjugate
distributions.
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