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A short diversion into the theory of Markov chains,
with a view to Markov chain Monte Carlo methods

1 Introduction

These lecture notes was written for a PhD-course, “Stochastic simulation and example of
applications” held at Aalborg University, May-June 2004. It concerns Markov chain Monte
Carlo (MCMC) methods, particularly the Metropolis-Hastings algorithm and special cases
of this (Metropolis algorithm, Gibbs sampling, Metropolis within Gibbs). Various exercises
and examples of applications will be presented throughout the text. Particularly, examples
of Bayesian MCMC analysis will be discussed.
We start with a short diversion into the theory of Markov chains. So far we have for
simplicity considered Markov chains defined on a finite state space, but for many statistical
problems we need a more complicated state space Ω. For the purpose of simulation from a
given target density π, we clearly need to have that Ω ⊇ {x : π(x) > 0} (often Ω = {x :
π(x) > 0}). For specificity we consider in the following the case where Ω ⊆ R

d is the
state space for a d-dimensional continuous random vector (the reader may easily modify
things to the discrete case by replacing integrals by sums). As we shall see concepts like
e.g. irreducibility and convergence of Markov chains become slightly more technical, but
we shall try to keep technicalities at a minimum.
The exposition will be much directed by what is needed of Markov chain theory (Sections
2–5) in order to understand MCMC methods (Sections 6–11). We skip most proofs in this
tutorial (proofs can be found in the references given in Section 12).

2 Examples and basic definitions of Markov chains

2.1 Introductory example and exercise

Example 1 In this example we consider the constructions of two Markov chains with state
space Ω = R. For x, y ∈ R, we define

q(x, y) = exp
�

−(y − x)2/2
�

/
√

2π.

Then y �→ q(x, y) is the density of N(x, 1).
In the first construction we obtain a Markov chain (X0, X1, . . .) by setting

X0 = R0, Xn+1 = Xn + Rn+1, n = 0, 1, . . . ,
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where R0, R1, . . . are i.i.d. standard normal distributed. This Markov chain is called a
random walk. To see that it is indeed a Markov chain (a formal definition of the concept
“Markov chain” is given in Definition 1 below), we observe that for any x0, . . . , xn ∈ R

and any A ⊆ R,

P (Xn+1 ∈ A|X0 = x0, X1 = x1, . . . , Xn = xn)

=P (xn + Rn+1 ∈ A|R0 = x0, R1 = x1 − x0, . . . , Rn = xn − xn−1)

=P (xn + Rn+1 ∈ A) (since R0, . . . , Rn+1 are independent)

=

�

1[xn + r ∈ A]
1√
2π

exp
�

−r2/2
�

dr (because Rn+1 is N(0, 1)-distributed)

=

�

A

1√
2π

exp
�

−(y − xn)2/2
�

dy

=

�

A

q(xn, y)dy

which only depends on xn. Instead of these calculations we could simply argue that if
Xn = xn, then Xn+1 = xn + Rn+1 is the same no matter the values of X0, . . . , Xn−1

1.
Consequently, neither which argument we use, the conditional distribution of Xn+1 given
X0, . . . , Xn is seen to be the same as the conditional distribution of Xn+1 given Xn. Thus
it is a Markov chain. We have also shown that the conditional distribution of Xn+1 given
Xn = x is a N(x, 1)-distribution.
In the second construction we let π(x) denote an arbitrary density function which is strictly
positive on R, and define

a(x, y) = min

�

1,
π(y)

π(x)

�

. (1)

Furthermore, we letU1, U2, . . . be i.i.d. unif(0,1)-distributed (and independent ofR0, R1, . . .
as defined above). Then we obtain a new Markov chain (X0, X1, . . .) by X0 = R0 and

Xn+1 =

�

Yn+1 if Un+1 ≤ a(Xn, Yn+1)
Xn otherwise

for n = 0, 1, . . ., where Yn+1 is defined by Yn+1 = Xn + Rn+1. We can think of Yn+1 as
a proposal for Xn+1 at the (n + 1)th update. By construction we accept this proposal with
probability a(Xn, Yn+1). Since Un+1 ≤ 1, we can replace the condition for accepting the
proposal by Un+1 ≤ π(Yn+1)/π(Xn). Note that we always accept the proposal Yn+1 if it is
1When we make a computer code for generating a Markov chain it is formally given as Xn+1 =

ϕ(Xn, Vn+1). Here ϕ is a deterministic function called the updating function, and V1, V2, . . . are i.i.d. ran-
dom variables (or vectors). For the random walk we have ϕ(x, y) = x + y and Vn = Rn. Conversely, it is
easily seen that any stochastic recursive sequence given by Xn+1 = ϕ(Xn, Vn+1) is a Markov chain.

2



more likely than Xn (i.e. π(Yn+1) ≥ π(Xn) implies Xn+1 = Yn+1), while if it is less likely
there is still a chance of accepting the proposal: the chance is given by π(Yn+1)/π(Xn).
The latter construction is an example of the so-called Metropolis random walk algorithm
(Section 7). Note that if we redefine a(x, y) = 1, then the first case is formally a particular
case of the latter case (we write “formally” because there exists no density π(x) so that
both (1) and a(x, y) = 1 hold). In the sequel we therefore refer to the first case as the case
a(x, y) = 1.

Exercise 1

1. Argue in detail why the second construction in Example 1 specifies a Markov chain.

2. For simplicity let π be the density of N(0, 1). In order to simulateX1, . . . , Xn for the
two cases considered in Example 1 whenX0 = x is the initial state, write R-functions
random.walk(n,x) and Metropolis.random.walk(n,x).

3. Let X0 = 0 and simulate some sample paths (i.e. realisations of X1, . . . , Xn in the
two cases) and compare the results.

2.2 General setting

The setting considered below is motivated by how simulation algorithms (so-called Metro-
polis-Hastings algorithms) are constructed later on. So far the reader is recommended to
relate the following to the second case in Example 1.
For any x ∈ Ω, suppose that y �→ q(x, y) is a density function on Ω and define a probability
measure by

Q(x, A) =

�

A

q(x, y)dy, A ⊆ Ω. 2

We call q(x, y) a proposal density and Q(x, A) a proposal distribution. Furthermore, sup-
pose that a(x, y) is a number between 0 and 1 (Example 1 shows examples of such functions
a(x, y), and we shall later consider many other examples). Given x we think of a(x, y) as
a probability for accepting a proposal y drawn from the density q(x, y). In other words, we
think of a(x, y) as a probability of accepting a proposal Y = y drawn from the distribution
Q(x, A). We do not accept the proposal with probability

r(x) = 1 −
�

a(x, y)q(x, y)dy;

2Readers familiar with measure theory will more carefully read this as “for all measurable A ⊆ Ω”.
However, practically all subsets of R

d are measurable (this is the class of Borel sets), so we do not worry
about such details in this course.
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in that case we will retain x. Thus, for fixed x,

P (x,A) = r(x)1[x ∈ A] +

�

q(x, y)a(x, y)1[y ∈ A]dy, A ⊆ Ω, (2)

(where 1[x ∈ A] denotes the indicator function which is 1 if x ∈ A and 0 if x �∈ A) is
the probability measure describing what happens when we either accept the proposal y or
retain x. Informally we can also write this as

P (x,A) = P (Y is not accepted|x)1[x ∈ A] +

�

A

q(x, y)P (Y = y is accepted|x)dy.

Finally, we call P (Y is not accepted|x) = P (x, {x}) = r(x) the rejection probability.
Why this becomes a very useful strategy for making simulations is probably so far a mys-
tery for most readers. Before we can understand this we need to establish some theory as
outlined in the sequel.

Example 2 In the first case in Example 1 where a(x, y) = 1, we have thatXn = R0 + · · ·+
Rn where the Ri are i.i.d. and N(0,1)-distributed. Hence the conditional distribution of Xn

given X0 = x is N(x, n). So the variance tends to infinity as n → ∞ (did you observe that
when solving Exercise 1?). However, what is the (conditional or marginal) distribution of
Xn in the second case of Example 1? The answer will be given later in Theorem 2 (Section
4).

2.3 Some basic definitions

Definition 1 A random process (X0, X1, . . .) with state space Ω is said to be a (homoge-
neous) Markov chain with transition kernel P if for all integers n ≥ 0, all A ⊆ Ω, and all
x0, . . . , xn ∈ Ω we have

P (Xn+1 ∈ A|X0 = x0, X1 = x1, . . . , Xn = xn) = P (Xn+1 ∈ A|Xn = xn) = P (xn, A).

In other words, the conditional distribution of Xn+1 given X0, . . . , Xn is identical to the
conditional distribution of Xn+1 given Xn.

Definition 2 The initial distribution of a Markov chain (X0, X1, . . .) is the distribution
of X0. Furthermore,

P n(x,A) = P (Xn ∈ A|X0 = x), A ⊆ Ω,

denotes the conditional distribution ofXn givenX0 = x; this is called the n-step transition
kernel.
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It can be shown that the n-step transition kernel can be expressed in terms of the (1 step)
transition kernel, but in applications the expression is often complicated (in the random
walk example it was simple enough in the first case, but it is not in the case (1) unless
we let the initial distribution be given by π as noticed in Exercise 2 below). One impor-
tant point here is that the distribution of a Markov chain can be shown to be completely
specified by its initial distribution and its transition kernel.

3 Invariant distributions and reversibility

In the sequel we consider a Markov chain (X0, X1, . . .) with transition kernel P and unless
otherwise stated an arbitrary initial distribution.
For the purpose of simulation from a given target density π defined on Ω, we want to
construct the chain such that π becomes an invariant density (see Definition 3 below). As
we shall see later, such a chain can be constructed in many ways, but it needs at least to be
irreducible (see Definition 4 and Theorem 1 below). We let

Π(A) =

�

A

π(x)dx, A ⊆ Ω,

denote the target distribution.

Definition 3 A Markov chain with transition kernel P has π as its invariant density3 if
for all A ⊆ Ω,

�

π(x)P (x,A)dx = Π(A).

Moreover, the chain is reversible if (X0, X1) and (X1, X0) are identically distributed when
X0 ∼ π.

We say that the chain satisfies the detailed balance condition (DBC) if for all different
states x, y ∈ Ω,

π(x)p(x, y) = π(y)p(y, x) (3)
where we define

p(x, y) = a(x, y)q(x, y).

Note that by (2),
P (x,A) =

�

A

p(x, y)dy if x �∈ A.

3Also called a stationary density or an equilibrium density.
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It can be shown that the DBC implies both that π is an invariant density, the chain is re-
versible, and (X0, . . . , Xn) and (Xn, . . . , X0) are identically distributed whenX0 ∼ π (see
Exercise 2).

Exercise 2

1. Verify that if Xn is distributed according to an invariant distribution Π, then Xm has
distribution Π form = n + 1, n + 2, . . ..
Hint: Argue that by induction it suffices to consider the case m = n + 1.

2. For simplicity consider the discrete case and show that (3) implies that
a) π is an invariant density for the chain,
b) the chain is reversible,
c) and for any integer n ≥ 1, (X0, . . . , Xn) and (Xn, . . . , X0) are identically dis-
tributed when X0 is distributed in accordance with the invariant density.
Hint: a) Argue that it suffices to verify that π(x) =

�

y π(y)p(y, x).

3. The DBC will be satisfied for many Markov chains used for simulation, including
the Metropolis-Hastings in Section 6. However, consider the random walk example
(Example 1), and show that
a) it does not satisfy the DBC in the first case a(x, y) = 1 4

b) but it does satisfy the DBC in the second case (1).
Hint: a) If π(x) is constant for all x ∈ R, then π is not a well-defined density (why?).

4 Irreducibility and asymptotic results

Definition 4 Suppose a Markov chain has Π as its invariant distribution. The chain is
then irreducible if for all x ∈ Ω and A ⊆ Ω with Π(A) > 0, there exists an n such that
P n(x,A) > 0; in other words the chain can get to any region A with Π(A) > 0. To
stress the role of Π (or π) we also say that the chain is Π-irreducible (or π-irreducible).
Furthermore, the chain is Harris recurrent5 if

P (Xn ∈ A for infinite many n |X0 = x) = 1.

It becomes useful to notice that in the continuous case as considered in this tutorial,Π(A) >

4In fact even an invariant density does not exist in this case (you are not asked to verify that right now, but
you are welcome to discuss why it cannot be the case).
5In the discrete state space case, Harris recurrence is identical to irreducibility.
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0 is equivalent to
�

1[x ∈ A, π(x) > 0]dx > 0. (4)

It can be shown that irreducibility implies uniqueness of the invariant distribution6. The
concept of Harris recurrent is stronger than irreducibility, and it is used in the following
result.

Theorem 1 (The strong law of large numbers for Markov chains) Let (X0, X1, . . .)
be a π-irreducible Markov chain where π is an invariant density, and let h : Ω → R be
a function such that the mean θ =

�

h(x)π(x)dx exists. For an arbitrary integer m ≥ 0,
define the ergodic average7 by

θ̂n =
1

n + 1

m+n
�

i=m

h(Xi).

Then there exists a set C ⊆ Ω such that Π(C) = 1 and for all x ∈ C,

P (θ̂n → θ as n → ∞ |X0 = x) = 1.

Furthermore, if the chain is Harris recurrent, we can take C = Ω.

Thus irreducibility implies consistency of the estimator θ̂n for all initial states x ∈ C;
Harris recurrence ensures consistency for all initial states x ∈ Ω, and so we do not need
to worry about what happens if x �∈ C. In this course we shall mainly focus on verifying
irreducibility, since establishing Harris recurrence can be rather technical.
A natural question is if the choice of m in Theorem 1 is of any relevance in practice. We
investigate this in the following Exercise 3 and comment further on this after the exercise.

Exercise 3 Consider an irreducible Markov chain with invariant distribution Π.

1. Show that θ̂n is an unbiased estimator if Xm is drawn from Π.

2. a) Is it unbiased if it is not drawn from π? b) Does it matter?
Hint: b) Use Metropolis.random.walk(n,x) from Exercise 1 when e.g. h(x) =
x is the identity mapping, and try with different values of (n,x).

3. Show that in the case (1) of the random walk Metropolis algorithm in Example 1, the
chain is π-irreducible.
Hint: Recall (4).

6More precisely, we mean uniqueness of the invariant distribution up to so-called null sets, but again we
do not worry about such details, which have no practical importance.
7Also called the empirical average.
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In practice we choose m as the so-called burn-in, that is a time at which the chain is con-
sidered to be effectively in equilibrium (i.e. m is large enough so that the distribution of
Xm is in very close accordance with π; we shall later return to this issue in greater detail).
We therefore now turn to the question when a Markov chain has a limiting distribution, and
what it is. First we need the following definition.

Definition 5 A Π-irreducible Markov chain is periodic if there is a partition of the state
space Ω = A0 ∪ A1 ∪ · · · ∪ An−1 ∪ An into n + 1 ≥ 3 disjoint sets A0, . . . , An such that
Π(An) = 0 and

x ∈ A0 ⇒ P (x,A1) = 1, x ∈ A1 ⇒ P (x,A2) = 1, . . . ,

x ∈ An−2 ⇒ P (x,An−1) = 1, x ∈ An−1 ⇒ P (x,A0) = 1.

Otherwise the chain is said to be aperiodic.
Note that aperiodicity is not needed for the strong law of large numbers for Markov chains
(Theorem 1). However, aperiodicity is needed in the following theorem.

Theorem 2 (The Markov chain convergence theorem) For a Π-irreducible and aperi-
odic Markov chain, where Π is the invariant distribution, there exists a set C ⊆ Ω such that
Π(C) = 1 and for all x ∈ C and A ⊆ Ω,

P (Xn ∈ A |X0 = x) → Π(A) as n → ∞.8

If it is also Harris recurrent9, then we can take C = Ω.

Exercise 4 Consider again Example 1.

1. Does there exist a limiting distribution for the chain in the case a(x, y) = 1?
Hint: Recall Example 2.

2. Argue why the chain in the case (1) is aperiodic. What is the limiting distribution?
Hint: Recall 3.b) in Exercise 2.

Finally, we notice that a central limit theorem also hold forMarkov chains satisfying certain
conditions (including irreducibility and aperiodicity). For example, the Metropolis random
walk algorithm satisfies these conditions, but since the conditions are a bit technical, we
shall not discuss these further here.
8In fact we then have convergence with respect to the total variation norm.
9Harris recurrence and aperiodicity are not only sufficient but also necessary conditions for the Markov

chain convergence theorem to hold for all initial states x ∈ Ω.
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Exercise 5 Consider again Example 1, fix the initial state to X0 = 0, and let

X̄n =
1

n
(X1 + · · · + Xn)

be the ergodic average based on a sample of length n ≥ 2.

1. Show that if a(x, y) = 1 then X̄n ∼ N(0, n(n + 1)(2n + 1)/(6n2)). What does this
mean as n → ∞?
Hint: First show that

X̄n =
1

n
(nR1 + (n − 1)R2 + (n − 2)R3 + · · · + Rn)

and next use that 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)/6.

2. Consider the case (1) with Π = N(0, 1).
a) In each of the cases n = 1000, 2000, . . . , 10000 simulate 10 i.i.d. realisations of
X̄n and estimate then the variance of X̄n.
b) Does the variance seem to be a decreasing function of order 1/n?
c) Simulate 100 i.i.d. realisations of X̄n when n = 1000, and discuss if

√
nX̄n is

(approximately) N(0, 1)-distributed.
Hint: b) Plot n times the estimated variance versus n/1000.
c) Consider histograms and q-q plots.

5 Importance sampling based on Markov chains

We have earlier introduced importance sampling in the simple setting of an i.i.d. sample.
This easily extends to Markov chains as follows.
Let still π denote our target density and suppose we want to estimate the mean θ =
�

h(x)π(x)dx. Assume that g is another density such that

π(x) > 0 ⇒ g(x) > 0

and we have constructed a g-irreducible and aperiodic Markov chain Y0, Y1, . . . with invari-
ant density g. Let m ≥ 0 denote the burn-in of the chain. By Theorem 1, if Y0 ∈ C where
�

C
g(x)dx = 1, then

θ̃n =
1

n + 1

m+n
�

i=m

h(Yi)
π(Yi)

g(Yi)
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is a consistent estimator10 of θ.
As in the i.i.d. case, we call g the instrumental or importance sampling density, and

w(Yi) =
π(Yi)

g(Yi)
, i = m, . . . ,m + n,

the importance weights. As before, the variation of the importance weights should not be
too large.

Exercise 6 As an illustrative example, let us consider the situation where the importance
sampling distribution is N(0, 1) and the target distribution is N(θ, 1), where θ ≥ 0 is a
parameter.

1. Show that the importance weight based on a realisation y is given by

w(y) = exp
�

θy − θ2/2
�

.

2. Simulate what happens with the importance weights as θ = 0, 1, 2, 3 increases when
we use

(a) 1000 i.i.d. samples from N(0, 1),
(b) 1000 samples from the Metropolis random walk chain when this is started in
equilibrium, i.e. when the burn-in ism = 0 and Y0 is drawn from N(0, 1).

6 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (due to Metropolis et al., 1953, and Hastings, 1970)
provides very general constructions of Markov chains with an arbitrary equilibrium density.
The Metropolis random walk algorithm in Example 1 is just one example of a specific
Metropolis-Hastings algorithm.
Consider the setting at the beginning of Section 2: given a target density π and a proposal
density q(x, y) how do we specify the acceptance probability a(x, y)? Recall the DBC
given by (3):

π(x)q(x, y)a(x, y) = π(y)q(y, x)a(y, x). (5)
If π(x)q(x, y) > 0, we can rewrite this as

a(x, y) = H(x, y)a(y, x).

10Strictly speaking aperiodicity is not needed here. Using an appropriate burn-in is usually a good idea as
it may drastically reduce the variance of the estimator θ̃n.
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where
H(x, y) =

π(y)q(y, x)

π(x)q(x, y)

is the so-called Hastings ratio. It turns out that it is not so important what H(x, y) is if
π(x)q(x, y) = 0, but for specificity let us set

H(x, y) = ∞ whenever π(x)q(x, y) = 0.

If we set
a(x, y) = min {1, H(x, y)} (6)

then (5) is satisfied (Exercise 7). It can be shown that if (5) should be satisfied, then the
highest acceptance probabilities are obtained by the choice (6). The Metropolis-Hastings
algorithm uses this choice and can be described as follows.

Metropolis-Hastings algorithm Let the initial state X0 = x be such that π(x) > 011.
For n = 0, 1, . . ., given Xn we

• generate Un+1 ∼ unif(0, 1) and Yn+1 from the density y �→ q(Xn, y) (where Un+1

and Yn+1 are independent given Xn),

• and then set
Xn+1 =

�

Yn+1 if Un+1 ≤ H(Xn, Yn+1)
Xn otherwise

An important observation: Note that the Metropolis-Hastings algorithm only depends on
π through the ratio π(Yn+1)/π(Xn) from the Hastings ratio, so in the Metropolis-Hastings
algorithm we need only to know π up to proportionality (because any constant factor will
cancel in the ratio π(Yn+1)/π(Xn)). Thus, when we later consider examples of posterior
densities as our target density π, we need only to specify the posterior density up to propor-
tionality.
Theorem 3 By construction the Metropolis-Hastings algorithm is reversible with invariant
density π.

Other properties (irreducibility etc.) need to established under further assumptions. For
instance, if

q(x, y) > 0 for all x, y ∈ Ω

11In most situations it is natural to require that π(X0) > 0, because then (with probability one) π(Xn) >

0 for all n ≥ 0. However, in some rare occasions it is advantageous to modify the Metropolis-Hastings
algorithm so that π(X0) = 0 is allowed: Then by definition, if X0 = x and if Y1 = y is proposed, a(x, y) =
1, and so X1 = Y1 is accepted. If further q(x, y) > 0 implies π(y) > 0, then we are certain that π(X1) > 0,
and so π(Xn) > 0 for all n ≥ 1.
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then the Metropolis-Hastings chain is π-irreducible. Furthermore, we have Harris recur-
rence because of the following result.

Theorem 4 If the Metropolis-Hastings chain is π-irreducible, it is Harris recurrent.

Finally, we observe that any π-irreducible Markov chain is aperiodic if the event {Xn+1 =
Xn} is possible when Xn ∼ π, i.e.

�

P (x, {x})π(x)dx > 0.

For the Metropolis-Hastings algorithm this means that
� �

1[π(y)q(y, x) < π(x)q(x, y)]q(x, y)π(x)dydx > 0.

Exercise 7 Fill in the details, showing that the Metropolis-Hastings algorithm satisfies the
DBC.

7 Metropolis algorithm

This is the special case of the Metropolis-Hastings algorithm with a symmetric proposal
density:

q(x, y) = q(y, x).

Then the Hastings ratio reduces to theMetropolis ratio

H(x, y) = π(y)/π(x)

whenever q(x, y) > 0.
For aMetropolis random walk algorithm,

q(x, y) = f(y − x)

where f is a symmetric density function, so q(x, y) = q(y, x). Example 1 provides an
example of such an algorithm. Theoretical results show that the Metropolis random walk
algorithm “works best” if chosen so that the acceptance probability in average is between
0.2 and 0.4.
Exercise 8 Recall Exercise 5 in the text “Basic methods for simulation of random variables:
1. Inversion” regarding estimating the probability θ for a female birth given a special
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condition called placenta previa. There we performed a Bayesian analysis letting the data
distribution be binomial (see the Example in “A brief introduction to (simulation based)
Bayesian inference”) and assuming a non-standard prior density for θ. Posterior inference
was done by sampling the posterior distribution of Θ, i.e. the conditional distribution of Θ
given the number of female births x of the total number of births n. Specifically this was
done by discretising the posterior density and then sampling from this discrete distribution
using inversion.
An alternative to the discretisation approach is to apply aMetropolis algorithm for sampling
the posterior distribution of θ. In this case the posterior density π(θ|x) of θ plays the role
of π in the theory above and θ itself plays the role of x. Furthermore, we let θ � denote the
proposal (corresponding to y in the theory above). Assume that if θ is the current state then
the proposal θ� is generated from a normal distribution with mean θ and standard deviation
σ > 0, i.e. q(θ, θ�) = exp(−(θ� − θ)2/(2σ2))/

√
2πσ2.

1. Implement an R-function for this Metropolis algorithm.

2. Use the R function to produce a sequence Θ0, Θ1, . . . , Θn when σ = 0.05 and n =
1000. Summarise the simulation by a histogram and 2.5%, 50% and 97.5% quantiles.
Furthermore, compare the histogram to a plot of the posterior density.
Hint: The R code used for Exercise 5 mentioned above may be useful.

8 Gibbs sampler

Suppose that the state space Ω ⊆ R
d is a product space

Ω = Ω1 × Ω2 × · · · × Ωk (7)

where Ω1 ⊆ R
d1, Ω2 ⊆ R

d2, . . . , Ωk ⊆ R
dk , and d1 + d2 + · · · + dk = d. If X is a random

vector following the target density π, we can write

X = (X1, X2, . . . , Xk) (8)

where Xi is the projection of X on Ωi, i = 1, . . . , k; we refer to Xi as the ith component.
We use bold face for X in (8) to emphasize that it is a vector and later to avoid confusing
an indexed element of the type (8), sayXn, with the component Xn ofX. Let

X i = (X1, . . . , Xi−1, Xi+1, . . . , Xk)

denote X minus Xi, i.e. X i has state space Ωi = Ω1 × · · · × Ωi−1 × Ωi+1 × · · · × Ωk.
Gibbs sampling consists in simulating from the conditional distributions of Xi given X i,
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i = 1, . . . , k; below we consider first the case of a cyclic updating scheme, i.e. when
updating the components in cycles given by the first, the second, . . . , the last component;
later on we comment on other updating schemes.
For simplicity, let us assume that

π(x) > 0 for all x ∈ Ω. (9)

The density of X i is then given by

πi(xi) =

�

Ωi

π(x1, . . . , xi−1, yi, xi+1, . . . , xk)dyi, xi ∈ Ωi,

and the conditional density of Xi given X i = xi (for xi ∈ Ωi) is given by

πi(xi|xi) = π(x)/πi(xi), xi ∈ Ωi,

where x is specified in accordance with xi and xi. So if Pi(·|xi) denotes the conditional
distribution of Xi given X i = xi, then

Pi(A|xi) = P (Xi ∈ A|X i = xi) =

�

A

πi(xi|xi)dxi, A ⊆ Ωi.

The densities πi(xi|xi) are called the full conditionals, and a particular feature of the
Gibbs sampler is that these are the only densities used for simulation. Thus, even in high-
dimensional problems, all of the simulations may be of low dimension (i.e. all di are small),
which is usually an advantage.
Example 3 Before giving the details of the Gibbs sampler, let us consider a simple example
where k = d = 2 and π is the density of a 2-dimensional normal distribution so that

EX1 = EX2 = 0, V arX1 = V arX2 = 1, Cov(X1, X2) = ρ

where −1 < ρ < 1 is a parameter (the correlation). Then

π(x1, x2) =
1

2π
�

1 − ρ2
exp

�

− 1

2(1 − ρ2)
(x2

1 + x2
2 − 2ρx1x2)

�

. (10)

It can be shown that X1 ∼ N(0, 1), X2 ∼ N(0, 1), and

X1|X2 ∼ N(ρX2, 1 − ρ2), X2|X1 ∼ N(ρX1, 1 − ρ2). (11)

For example, if we fix x2, then

π(x1, x2) ∝ exp

�

− 1

2(1 − ρ2)
(x2

1 − 2ρx1x2)

�

∝ exp

�

− 1

2(1 − ρ2)
(x1 − ρx2)

2)

�
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which is proportional to the density of N(ρx2, 1 − ρ2), whereby the last result in (11) is
verified. Now, the cyclic Gibbs sampler generates

Xn = (X1,n, X2,n), n = 0, 1, . . . ,

by the following:
X1,n+1 is drawn from N(ρX2,n, 1 − ρ2),

X2,n+1 is drawn from N(ρX1,n+1, 1 − ρ2).

Note that givenX2,n we have thatX1,n+1 is independent of the “past” (X1,0, X2,0, . . . , X1,n);
and givenX1,n+1 we have thatX2,n+1 is independent of the “past” (X1,0, X2,0, . . . , X1,n, X2,n).
Furthermore, the conditional distributions in (11) are of the same type (meaning that for
any real number a, the full conditionals X1|X2 = a and X2|X1 = a are the same), so
both (X1,0, X2,0, X1,1, X2,1, . . .) and (X0,X1, . . .) are (homogeneous) Markov chains. In
many other examples of a cyclic Gibbs sampler, the conditional distributions ofX1|X2 and
X2|X1 are not of the same type (e.g. we could just modify the example above by letting
EX2 = 1), and so (X1,0, X2,0, X1,1, X2,1, . . .) becomes an inhomogeneous Markov chain,
while (X0,X1, . . .) is still a homogeneous Markov chain.
Returning to the general setting, let

Xn = (X1,n, X2,n, . . . , Xk,n), n = 0, 1, . . . , (12)

denote the Markov chain in Gibbs sampling. Then for Gibbs sampling using a cyclic up-
dating scheme, given Xn we generate Xn+1 by updating first X1,n+1, second X2,n+1, . . . ,
and finally Xk,n+1 in accordance to the following:

X1,n+1 is drawn from P1(·|X2,n, . . . , Xk,n)

X2,n+1 is drawn from P2(·|X1,n+1, X3,n, . . . , Xk,n)

...
Xk,n+1 is drawn from Pk(·|X1,n+1, . . . , Xk−1,n+1).

Since

Xi,n+1|(X1,0, X2,0, . . . , Xi−1,n+1) ∼ Pi(·|X1,n+1, . . . , Xi−1,n+1, Xi+1,n, . . . , Xk,n)

(with obvious modifications if i = 1), we have that Xi,n+1 and (X1,0, X2,0, . . . , Xi−1,n) are
independent given (Xi+1,n, . . . , Xk,n, X1,n+1, . . . , Xi−1,n+1). So we say that

(X1,0, X2,0, . . . , Xk,0, X1,1, X2,1, . . . , Xk,1, . . .)

is a Markov chain of order k − 1 (it might be inhomogeneous, cf. Example 3). It follows
that (X0,X1, . . .) is a (homogeneous) Markov chain.
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The cyclic Gibbs sampler is not reversible. However, each update is in a way reversible,
since for any x ∈ Ω and yi ∈ Ωi, letting y = (x1, . . . , xi−1, yi, xi+1, . . . , xk), we have
detailed balance:

π(x)πi(yi|xi) = π(x)
π(y)

πi(xi)
= π(y)πi(xi|xi). (13)

Because of this it can be verified that the chain (12) has π as an invariant density; this is
also verified in Section 9. Furthermore, it can be shown that (9) implies that the cyclic
Gibbs sampler is Harris recurrent (and hence irreducible) and aperiodic.
Sometimes other updating schemes are used. A systematic updating scheme which in fact
leads to a reversible Gibbs sampler is given by a forward cycle followed by a backward
cycle: Let (X1,n, X2,n, . . . , Xk,n) denote the result after the nth forward cycle and

Xn = (Xk,n, Xk+1,n, . . . , X2k−1,n)

the result after the nth backward cycle, then

X1,n+1 is drawn from P1(·|X2k−2,n, . . . , Xk,n)

X2,n+1 is drawn from P2(·|X1,n+1, X2k−3,n, . . . , Xk,n)

...
Xk,n+1 is drawn from Pk(·|X1,n+1, . . . , Xk−1,n+1)

Xk+1,n+1 is drawn from Pk−1(·|X1,n+1, . . . , Xk−2,n+1, Xk,n+1)

...
X2k−1,n+1 is drawn from P1(·|X2k−2,n+1, . . . , Xk+1,n+1, Xk,n+1).

Alternatively, a random updating scheme can be used to ensure reversibility: Then given
Xn we update Xn+1 by first generating a random variable In+1 from the uniform distribu-
tion on {1, 2, . . . , k}. Suppose that In+1 = i. Then we next generateXi,n+1 from Pi(·|X i

n),
and we keep the rest, i.e. Xj,n+1 = Xj,n for j �= i. This is also a reversible Gibbs sampler.
Exercise 9: Pump failure data This exercise mainly consists in understanding and dis-
cussing the following statistical analysis and in implementing a Gibbs sampler for the prob-
lem. We give many details as this might be the first time the reader is seeing a Bayesian
analysis for a higher-dimensional posterior distribution. These details may later appear
quite trivial and will often be omitted in Bayesian textbooks and papers. In particular we
try to be careful in relating the notation to that presented above on Gibbs sampling in a
general context.
At each of 10 pump stations, the number of failures yi over a time span of length ti > 0
was observed, where i = 1, . . . , 10. We assume that the time span vector t = (t1, . . . , t10)
is known and fixed and that y = (y1, . . . , y10) is our data, see Table 1. We consider y
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as a realisation of a stochastic vector Y = (Y1, . . . , Y10) where each Yi has state space
{0, 1, 2, . . .}.

Pump Failures Time span
i yi ti
1 5 94.320
2 1 15.720
3 5 62.880
4 14 125.760
5 3 5.240
6 19 31.440
7 1 1.048
8 1 1.048
9 4 2.096
10 22 10.480

Table 1: Pump failure data

Below we consider a Bayesian MCMC analysis of these data. We assume the following
model structure illustrated in Figure 1:

1. The distribution of each Yi depends on the realisation of a positive random variable
Λi, which we interpret as an unobserved failure rate. Specifically, the conditional
distribution of Yi given Λi = λi is assumed to be a Poisson distribution with mean
tiλi (can you argue why this may be a reasonable model assumption?).

2. Conditional on Λ = (Λ1, . . . , Λ10), we assume that Y1, . . . , Y10 are independent.

3. The distribution of Λ depends on a positive random variable B, which we interpret
as the mean level of the unobserved failure rates. Specifically, conditional on B = β,
we assume that Λ1, . . . , Λ10 are independent, and each Λi is exponentially distributed
with parameter β.

4. We assume that B is exponentially distributed with parameter 40 (briefly, this value
was obtained by some experimentation).

5. Finally, we assume that the conditional distribution of Y given (Λ, B) does not de-
pend on B but only on Λ (in fact this is something one can immediately obtain from
the graphical representation used in Figure 1, as there is no direct arrow from B to
Y1, . . . , Y10).
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Y1 Y2 Y10· · ·

· · ·Λ1 Λ2 Λ10

B

Figure 1: Hierarchical structure for pump failure data.

A model with this kind of structure is known as a hierarchical model. Such models are
widely used within Bayesian statistics.
Specification of data distribution: This is given by the model assumptions 1., 2. and 5.
above: By 1. and 2., given that Λ1 = λ1, . . . , Λ10 = λ10, thenY has conditional density

π(y|λ) =
10
�

i=1

π(yi|λi) =
10
�

i=1

(tiλi)
yi

yi!
e−tiλi , y1, . . . , y10 ∈ {0, 1, 2, . . .} (14)

where y = (y1, . . . , y10) and λ = (λ1, . . . ,λ10). Furthermore, by 5., the conditional density
ofY given (Λ, B) = (λ,β) does not depend on β:

π(y|λ,β) = π(y|λ). (15)

Specification of prior distribution: This is given by the model assumptions 3. and 4.
above12: B has density

π(β) = 40e−40β, β > 0, 13 (16)

and conditional on B = β we have that Λ has density

π(λ|β) =
10
�

i=1

π(λi|β) =
10
�

i=1

β exp(−βλi) = β10 exp(−βλ.) (17)

for λ = (λ1, . . . ,λ10) ∈ (0,∞)10, where λ. = λ1 + . . . + λ10. The prior density of (Λ, B)
is simply given by π(λ,β) = π(λ|β)π(β).
12These rather simple prior assumptions are mainly made for illustrative purposes. More “realistic” prior

assumptions can be imposed but leads to a more complicated analysis.
13In Bayesian statistics B is called a hyper parameter and π(β) a hyper prior.
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Specification of posterior distribution: This is specified by the conditional density of (Λ, B)
given the dataY = y:

π(λ, β|y) = π(y,λ, β)/π(y) ∝ π(y,λ, β)

where the proportionality follows from the fact that π(y) is a constant when the data Y = y
is given. The joint density π(y,λ,β) is determined by (14)–(17):

π(y,λ,β) = π(y|λ,β)π(λ, β) = π(y|λ)π(λ|β)π(β),

and so the posterior distribution of (Λ, B) has unnormalised density

π(λ, β|y) ∝ β10e−40β

10
�

i=1

λyi

i e−(ti+β)λi , (λ, β) ∈ (0,∞)11, (18)

where again we have omitted any factors not depending on (λ, β).
Specification of full conditionals: Consider the random vector X = (Λ1, . . . , Λ10, B) con-
sisting of k = 11 one-dimensional components. For the Gibbs sampler below we need to
find the 11 full conditionals obtained from the posterior density (18). In this connection we
make the following points: Recall that a gamma distribution with parameters a > 0 and
b > 0 has density

f(x|a, b) =
ba

Γ(a)
xa−1e−bx, x > 0.

Furthermore, if we briefly return to the general setting of a Gibbs sampler, recall that a
full conditional is given by πi(xi|xi) = π(x)/πi(xi). Consider xi to be fixed. Then ignor-
ing both the denumerator πi(xi) and any other constant factors only depending on xi it is
usually easy from

πi(xi|xi) ∝ π(x)

to determine if πi(xi|xi) is proportional to the density of a known distribution. So e.g. if
we obtain that πi(xi|xi) ∝ xa−1

i e−bxi , we know that this is an unnormalised gamma density
with parameters a and b (remember to check if this density is well-defined, i.e. if a > 0 and
b > 0).
We show first that the full conditional πi(λi|λi,β, y) = πi(λi|β, y) does not depend on
λi = (λ1, . . . ,λi−1,λi+1, . . . ,λ10). For fixed β, (18) is a product of 10 terms depending
on λ1, . . . ,λ10, respectively (this means that given (B,Y), we have that Λ1, . . . , Λ10 are
independent). Consequently, πi(λi|λi,β, y) = πi(λi|β, y). Moreover, it follows from (18)
that Λi given B = β andY = y has conditional density

πi(λi|β, y) ∝ λyi

i e−(ti+β)λi .
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This is recognised as an unnormalised gamma density with parameters yi + 1 and ti + β.
It follows also from (18) that B given Λ = λ andY = y has conditional density

π11(β|λ, y) ∝ β10e−(40+λ
·
)β

which is recognised as an unnormalised gamma density with parameters 11 and 40 + λ· (in
accordance with model assumption 5., it follows from this that given Λ, we have that B
andY are independent).
Gibbs sampling: We want to sample from the posterior distribution using Gibbs sampling
(with a cyclic updating scheme) based on the 11 full conditionals specified above. This
leads to the following Gibbs sampler for producing a Markov chain Xn = (Λn, Bn), n =
0, 1, 2, . . ., where Λn = (Λ1,n, . . . , Λ10,n):

I Choose initial values of Λ0 = (Λ1,0, . . . , Λ10,0) and B0.

II For n = 0, 1, 2 . . . do

(a) for i = 1, . . . , 10, generate Λi,n+1 from a gamma distribution with parameters
yi + 1 and ti + Bn,

(b) generateBn+1 from a gamma distribution with parameters 11 and Λ1,n+1+· · ·+
Λ10,n+1 + 40.

Problems:

1. Implement this Gibbs sampler as a function in R.

2. Use the function to simulate realisations of the chainX0, . . . ,X1000. For i = 1, . . . , 10,
summarise the simulation by a histogram based on Λi,0, . . . , Λi,1000, and compare
with the naive estimate yi/ti.

9 Metropolis within Gibbs or hybrid Metropolis-Hastings
algorithms

Consider again the situation in (7) and (8). Recall that the Gibbs sampler (with a cyclic or
another given updating scheme) consists in updating from the full conditionals, and each
such update is reversible in the sense of (13). Suppose it is not convenient to generate
simulations from the full conditional πi(xi|xi). Then instead a Metropolis-Hastings update
might be used: Let qi(yi|x) be a proposal density, where yi plays the role of the proposal
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and x = (x1, . . . , xi−1, xi, xi+1, . . . , xk) is the current value before the update of xi. Note
that the proposal density is allowed not only to depend on xi but also on xi. For instance,
qi(yi|x) = fi(yi − xi) could specify a random walk type proposal, where fi is a symmetric
density. Define the Hastings ratio by

Hi(xi, yi|xi) =
πi(yi|xi)qi(xi|(x1, . . . , xi−1, yi, xi+1, . . . , xk))

πi(xi|xi)qi(yi|(x1, . . . , xi−1, xi, xi+1, . . . , xk))

and the acceptance probability by

ai(x, yi) = min{1, Hi(xi, yi|xi)}.

In the random walk case qi(yi|x) = fi(yi − xi) we obtain

Hi(xi, yi|xi) =
π(x1, . . . , xi−1, yi, xi+1, . . . , xk)

π(x1, . . . , xi−1, xi, xi+1, . . . , xk)

whenever fi(yi − xi) > 0. The Gibbs sampler is the special case where all qi(yi|x) =
πi(yi|xi), whereby ai(x, yi) = 1.
MCMC algorithms based on such combinations of Gibbs updates and Metropolis-Hastings
updates are calledMetropolis within Gibbs or hybrid Metropolis-Hastings algorithms. Exer-
cise 10 below shows a specific example of such an algorithm. As in the Gibbs sampler, a
Metropolis within Gibbs algorithms has π as its invariant density: consider an update of
the ith component when xi is fixed; it follows from similar arguments as in Section 6 that
the update of the ith component satisfies detailed balance and hence that the ith full con-
ditional πi(·|xi) is invariant; consequently, π is invariant. Properties such as irreducubility,
aperiodicity, etc. have to be established for the particular construction considered. Note
that

Hi(xi, yi|xi) =
π(x1, . . . , xi−1, yi, xi+1, . . . , xk)qi(yi|(x1, . . . , xi−1, xi, xi+1, . . . , xk))

π(x1, . . . , xi−1, xi, xi+1, . . . , xk)qi(yi|(x1, . . . , xi−1, yi, xi+1, . . . , xk))

so we actually do not need to determine the full conditional πi(xi|xi). Moreover, as in the
original Metropolis-Hastings algorithm, we need only to know the density π up to propor-
tionality.
Exercise 10 : Rat tumor data This exercise concerns a statistical analysis similar to
the one considered in Exercise 9. The main difference is that a Metropolis within Gibbs
algorithm is needed for the simulation of the posterior. For these reasons this exercise
contains less details compared to Exercise 9.
In the following we consider the results of a clinical study of a specific type of tumor
among rats. The study consisted of 71 experiments, where the ith experiment consisted
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Y1 Y2 Y71· · ·

· · ·Θ1 Θ2 Θ71

A,B

Figure 2: Hierarchical structure for rat tumor data.

in counting the number of tumor cases yi among the ni rats in that experiment. Since
all rats in the data set were in a control group, the rates were not exposed to any special
treatment. We assume that the vector of group sizes n = (n1, . . . , n71) is known and fixed
and that y = (y1, . . . , y71) is our data. We consider y as a realisation of a stochastic vector
Y = (Y1, . . . , Y71) where each Yi has state space {0, 1, 2, . . . , ni}.
As in Exercise 9 we assume a hierarchical model structure, which is illustrated in Figure 2
and specified as follows.

1. The distribution of each Yi depends on a realisation of a random variable Θi ∈ (0, 1)
which we interpret as the death rate in the ith group of rats. Specifically we assume
that the conditional distribution of Yi given Θi = θi is binomial with parameters θi

and ni.

2. Conditional onΘ = (Θ1, . . . , Θ71) we assume that Y1, . . . , Y71 are independent.

3. The distribution of Θ depends on a realisation of two positive random variables A
and B: given A = α and B = β, we assume that Θ1, . . . , Θ71 are independent and
Θi is beta distributed with parameters α and β.

4. We assume that the joint distribution ofA andB has density 14 π(α,β) ∝ (α+β)−5/2.

5. Finally, analog to Exercise 9, we assume that the conditional distribution ofY given
(Θ, A,B) does not depend on (A,B).

14See Gelman et al. (2004) for a discussion of why this is an appropriate choice.
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Specification of data distribution: Model assumptions 1. and 2. imply that the conditional
density ofY given Θ1 = θ1, . . . , Θ71 = θ71 is

π(y|θ) =
71
�

i=1

π(yi|θi) =
71
�

i=1

�

ni

yi

�

θyi

i (1 − θ)ni−yi, yi ∈ {0, 1, . . . , ni}, i = 1, . . . , 71,

where y = (y1, . . . , y71) and θ = (θ1, . . . , θ71). By 5., π(y|θ,α,β) = π(y|θ) does not
depend on (α,β).
Specification of prior distribution: By 3., conditional onA = α andB = β, the conditional
density ofΘ is

π(θ|α, β) =
71
�

i=1

π(θi|α, β) =
71
�

i=1

Γ(α + β)

Γ(α)Γ(β)
θα−1

i (1 − θi)
β−1,

θ = (θ1, . . . , θ71) ∈ (0, 1)71. The prior density of (Θ, A,B) is then given by π(θ,α,β) =
π(θ|α, β)π(α,β), where π(α,β) is given in 4.
Specification of posterior distribution: By similar arguments as in Exercise 9 we obtain
that the posterior distribution of (Θ, A,B) given dataY = y has density

π(θ,α,β|y) ∝ π(α,β)π(θ|α, β)π(y|θ)

= π(α,β)
71
�

i=1

π(θi|α, β)
71
�

i=1

π(yi|θi)

∝ (α + β)−5/2

�

71
�

i=1

Γ(α + β)

Γ(α)Γ(β)
θα−1

i (1 − θi)
β−1

�

�

71
�

i=1

�

ni

yi

�

θyi

i (1 − θi)
ni−yi

�

(19)

∝ (α + β)−5/2

�

Γ(α + β)

Γ(α)Γ(β)

�71 71
�

i=1

θα+yi−1
i (1 − θi)

β+ni−yi−1 (20)

for θ ∈ (0, 1)71, α > 0 and β > 0.
Specification of full conditionals: Using argument like in Exercise 9 verify the following
points A.-C.

A. Given (A,B) = (α,β) andY = y the conditional distribution ofΘ has density

π(θ|α, β, y) ∝
71
�

i=1

θα+yi−1
i (1 − θi)

β+ni−yi−1, θ ∈ (0, 1)71. (21)
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B. The conditional distribution (21) implies that, conditional on (A,B) = (α,β) and
Y = y, we have that Θ1, . . . , Θ71 are independent and Θi is beta distributed with
parameters α + yi and β + ni − yi.
Hint: A beta distributed random variable with parameters a > 0 and b > 0 has
unnormalised density

f(x) ∝ xa−1(1 − x)b−1 for 0 < x < 1.

C. The joint conditional distribution of (A,B) given Θ = θ and Y = y has unnor-
malised density

π(α,β|θ, y) ∝ (α+β)−5/2

�

Γ(α + β)

Γ(α)Γ(β)

�71 71
�

i=1

θα−1
i (1−θi)

β−1, (α,β) ∈ (0,∞)2.

(22)
Notice that this is not the (unnormalised) density of any standard distribution.

Metropolis within Gibbs sampling: As it is not immediate how to sample (A,B) directly
from (22) we propose to use a Metropolis within Gibbs algorithm for sampling from
the posterior density (20). The Metropolis within Gibbs algorithm has 72 components:
Θ1, . . . , Θ71 and (A,B). By A. above we can easily (by a Gibbs step) sample from the
conditional distribution of Θi given (A,B) = (α,β) (this conditional distribution does
not depend on Θ1, . . . , Θi−1, Θi+1, . . . , Θ71). For (A,B) we propose to use a Metropo-
lis random walk update where the proposal comes from a bivariate normal distribution as
specified in II(b) below.
The Metropolis within Gibbs sampler generates a Markov chain Xn = (Θn, An, Bn), n =
0, 1, 2, . . ., as follows, whereΘn = (Θ1,n, . . . , Θ71,n):

I Choose initial values ofΘ0 = (Θ1,0, . . . , Θ71,0), A0 and B0.

II For n = 0, 1, 2, . . . do

(a) For i = 1, . . . , 71 sample Θi,n+1 given An and Bn from a beta distribution with
parameters An + yi and Bn + ni − yi.

(b) Generate independent proposals A�

n+1 ∼ N(An,σ2
α) and B�

n+1 ∼ N(Bn,σ2
β)

(where σ2
α > 0 and σ2

β > 0 are user specified parameters).
(c) Generate Un+1 ∼ unif(0, 1).
(d) If Un+1 < π(A�

n+1, B
�

n+1|Θn+1, y)/π(An, Bn|Θn+1, y) then (An+1, Bn+1) =
(A�

n+1, B
�

n+1) otherwise (An+1, Bn+1) = (An, Bn).
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Implementing the Metropolis within Gibbs algorithm:

D. Implement the above Metropolis within Gibbs algorithm in R. You should implement
the algorithm so that the mean acceptance probability for the Metropolis update of
(A,B) can be calculated. The data can be loaded into R using
data <- read.table("/user/kkb/rats.dat",header=T)

The data consists of two variables y and n (use names(data) to verify this).

E. As the initial state choose Θi,0 = yi/ni, i = 1, . . . , 71, A0 = 1.6 and B0 = 10.
Further, initially let σ2

α = 0.52, σ2
β = 2.52 and let the sample length be 500. You may

want to experiment with the values of σ2
α, σ2

β and the sample length. Does different
choices of σ2

α and σ2
β affect the mean acceptance probability?

F. Consider how to summarise the results. One possibility is to derive the 2.5%, 50%
and 97.5% quantiles for each Θi, i = 1, . . . , 71 — in this case consider how you
could display all results regarding Θ1, . . . , Θ71 in a single plot. Further, you should
compare your results to the naive estimate yi/ni of Θi, i = 1, . . . , 71. You may also
want to examine a plot of B against A.
Hint: You should evaluate (22) on the log scale to avoid numerical problems in R.

10 Output analysis

WhenMCMC samples are used instead of samples of independent simulations at least three
problems emerge: assessment of convergence of Markov chains (burn-in, cf. Section 4);
computation of auto-correlations and the asymptotic variance of a Monte Carlo estimate;
and subsampling of a Markov chain. We consider each of these issues in the sequel.

10.1 Assessment of convergence

The burn-in is the time j ≥ 0 at which the marginal distribution of a Markov chain stateXj

is sufficiently close to its limit distributionΠ for all practical purposes (provided Theorem 2
in Section 4 applies). The states in the initial part of the chain may be far from the limiting
distribution due to the choice of the value of X0, so to reduce the bias of Monte Carlo
estimates, it is sensible to use only Xm, m ≥ j. Below we consider a simple graphical
method for determining the burn-in.
Visual inspection of trace plots k(Xm), m = 0, 1, . . . , for various real functions k is a
commonly used method to assess if the chain has or has not reached equilibrium. Figures
3 and 4 are examples of trace plots.
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Suppose trace plots are obtained from two or more chains of length n with different initial
values. Often one considers different extreme starting values. If the chains behave differ-
ently according to the trace plots for large values of m ≤ n, the burn-in for at least one of
the chains will be greater than n.
Example 4 In Exercise 10 we performed a Bayesian analysis of the number of tumor cases
among rats. There we constructed a Metropolis within Gibbs algorithm for sampling the
posterior distribution. One question is how we should choose the sample length n of the
Metropolis within Gibbs algorithm so that the resulting approximation of the posterior
distribution is “good enough”. By “good enough” we mean that the Markov chain is ef-
fectively a sample from the target distribution (in this case the posterior distribution) and
that the Markov chain is long enough that it is possible to estimate posterior quantities of
interest satisfactory.
Figure 3 shows trace plots of Θ35, A and B resulting from a application of the Metropolis
within Gibbs sampler in Exercise 10 when n = 500. The trace plot of Θ35 indicates that
convergence has effectively been reached after just a few updates; the trace plots for the
otherΘi lead to similar conclusions. However, it is unclear from the trace plots of A and B
if the chain has (effectively) converged. So can we still trust results for Θ35? We reapplied
the Metropolis within Gibbs sampler, but this time with n = 5000, whereby Figure 4 was
obtained. The trace plots look then more satisfactory, though the high picks after about
3700 iterations may indicate some concern. Possibly one would like to run the chain for
even longer. . . .
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Figure 3: From left to right: trace plots of Θ35, A and B when n = 500.

In Figure 5 we compare the posterior distributions of Θ estimated from the Markov chain
of length 500 in Figure 3 with the corresponding estimates based on the last 4500 elements
of the Markov chain of length 5000 in Figure 4. A visual inspection of the two plots in
Figure 5 show only minor differences suggesting that n = 500 and no burn-in is “good
enough” for the posterior analysis of Θ (which is the parameter of main interest in this
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Figure 4: From left to right: trace plots of Θ35, A and B when n = 5000.
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Figure 5: Left plot: summary of posterior distribution estimated from the Markov chain
in Figure 3. Right plot: summary of posterior distribution estimated from the last 4500
iterations of the Markov chain in Figure 4. Both plots: each vertical line represents the
95% central posterior interval for a Θi, and the small horizontal line represent the corre-
sponding median. Small random jitter has been added in the horisontal direction to help
distinguishing the vertical lines.

Example 5 Assume that we want to sample (X1, X2) from a bivariate normal distribution
with density π(x1, x2) given by (10) when ρ = 0.5. We use the following Metropolis
random walk algorithm:

I Choose initial valueX0 = (X1,0, X2,0).

II For i = 0, . . . , n − 1 do
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(a) Generate independent proposals Y1,i+1 ∼ N(X1,i,σ
2) and Y2,i+1 ∼ N(X2,i,σ

2)
(where σ2 is a user specified parameter).

(b) Generate Ui+1 ∼ unif(0, 1).
(c) IfUi+1 ≤ π(Y1,i+1, Y2,i+1)/π(X1,i, X2,i) then (X1,i+1, X2,i+1) = (Y1,i+1, Y2,i+1)
otherwise (X1,i+1, X2,i+1) = (X1,i, X2,i).

We have applied this Metropolis random walk algorithm using four different starting values
(X1,0, X2,0) = (−5,−5), (−5, 5), (5,−5), (5, 5) and n = 200. Figure 6 shows the trace
plots of the initial 10, 20, 50 and 200 states of the four Markov chains. Looking at these
plots it is clear that the chains are far from the target distribution after both 10 and 25
updates. After 200 updates we seem to have effectively converged and even so after 100
updates. This suggests a burn-in of length 100.
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Figure 6: Top row: four trace plots of the first 10, 25, 50 and 200 states of a 2-dimensional
Metropolis random walk chain. Bottom row: similar as in the top row but showing only
the trace plots for the first component.

10.2 Estimation of correlations and asymptotic variances

Plots of estimated auto-correlations and cross-correlations for different statistics often pro-
vide good indications of the chain’s mixing behaviour. Assume thatXj ∼ Π for some time
j ≥ 0. For a given real function k with finite variance

σ2 = V ar(k(Xj)),

define the lagm auto-correlation by

ρm = Corr(k(Xj), k(Xj+m)), m = 0, 1, . . . .
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Under fairly weak conditions, ρm → 0 asm → ∞. Similarly, given two functions k(1) and
k(2) with finite variances, the lag m cross-correlations are defined by

ρi1,i2
m = Corr(k(i1)(Xj), k

(i2)(Xj+m)), m = 0, 1, . . . , i1, i2 ∈ {1, 2}.

In the reversible case, ρ1,2
m = ρ2,1

m . Under fairly weak conditions, ρi1,i2
m → 0 as m → ∞.

The chain is slowly respectively rapidly mixing if the correlations are slowly respectively
rapidly decaying to 0.
For the estimation of ρm and ρi1,i2

m , let us for ease of presentation assume that j = 0
(in practice a burn-in j ≥ 0 may have been used, however, the following estimates are
also consistent without a burn-in) and that we have generated n states X0, . . . , Xn−1 of
the Markov chain. The lag m auto-covariance γm = σ2ρm is estimated by the empirical
auto-covariance

γ̂m =
1

n

n−1−m
�

i=0

(k(Xi) − k̄n)(k(Xi+m) − k̄n)

form = 0, . . . , n− 1 (there are good arguments for using the divisor n rather than n−m).
Here

k̄n =
1

n

n−1
�

i=0

k(Xi)

is the Monte Carlo estimate of Ek(X0). From this we obtain natural estimates

σ̂2 = γ̂0, ρ̂m = γ̂m/σ̂2, m = 0, 1, . . . .

Similar methods apply for estimation of cross-correlations.
The Monte Carlo error of k̄n can be expressed by theMonte Carlo variance

V ar(k̄n) =
σ2

n

�

1 + 2
n−1
�

m=1

�

1 − m

n

�

ρm

�

.

Under fairly general conditions a central limit theorem applies (see Section 4): then the
asymptotic variance is well defined and finite and given by

σ̄2 = lim
n→∞

nV ar
�

k̄n

�

= σ2τ

where

τ = 1 + 2
∞

�

m=1

ρm (23)
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is called the integrated auto-correlation time; and as n → ∞, √n(k̄n−Ek(X0)) is asymp-
totically normally distributed with mean 0 and variance σ̄2. The asymptotic variance deter-
mines the efficiency of a Monte Carlo estimate. In the special i.i.d. case, τ = 1. Note that
finiteness of τ implies by (23) that ρm → 0 asm → ∞.
Although γ̂m is a consistent estimate of γm, it is well known that the obvious estimate
1 + 2

�n−1
m=1 ρ̂m of τ is not consistent as n → ∞.

One method for estimation of the asymptotic variance is the method of batch means: Sup-
pose that n = n1n2 where n1 and n2 are integers and n2 is so large that we can treat the n1

batch mean estimates

k̄(i)
n1,n2

=
1

n2

in2−1
�

m=(i−1)n2

k(Xm), i = 1, . . . , n1,

as being (approximately) uncorrelated. Note that k̄n =
�n1

i=1 k̄
(i)
n1,n2

/n1. When n2 is suffi-
ciently large, the batch mean estimates are approximately normally distributed. This sug-
gests to estimate V ar(k̄n) by

n1
�

i=1

(k̄(i)
n1,n2

− k̄n)2/(n1(n1 − 1)).

Another method for estimating the asymptotic variance can be used in the reversible case:
It can be shown that for an irreducible and reversible Markov chain, Γm = γ2m + γ2m+1

is a strictly positive, strictly decreasing, and strictly convex function of m = 0, 1, . . ..
Here strict convexity means that the sequence Γ0 − Γ1, Γ1 − Γ2, Γ2 − Γ3, . . . is strictly
decreasing. Let ls ≤ (n − 2)/2, s = pos,mon, conv, be the largest integers so that Γ̂m =
γ̂2m + γ̂2m+1, m = 0, . . . , ls, is respectively strictly positive, strictly decreasing, or strictly
convex. Then it can verified that the initial sequence estimates

τ̂s = 1 + 2
2Ls+1
�

m=1

ρ̂m, (24)

where
Lpos = lpos, Lmon = min{Lpos, lmon}, Lconv = min{Lmon, lconv},

provide consistent conservative estimates of τ , i.e.

lim inf
n→∞

(σ̂2τ̂s) ≥ σ̄2 for s = pos,mon, conv

where τ̂pos ≥ τ̂mon ≥ τ̂conv.
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Example 6 In Figure 7 we have shown results based on simulating three Markov chains
using the Metropolis random walk algorithm in Exercise 8 when n = 1000 and σ =
0.005, 0.05, 0.5, respectively. The corresponding mean acceptance probabilities are ā =
0.892, 0.331 and 0.028; the case σ = 0.05 is the only one where ā is between 0.2 and 0.4.
Comparing the three trace plots in Figure 7, the case σ = 0.05 seems fastest converging
and best mixing. The chain is less stable when σ = 0.005, and for σ = 0.5 the chain gets
stuck for long periods of time.
Comparing the plot of lagm auto-correlations, again the case σ = 0.05 looks best with the
auto-correlation quickly getting close to zero. For the case σ = 0.005 the auto-correlation is
reaching zero slower because the proposals are close to current value. For the case σ = 0.5
the auto-correlation reaches zero slowly because of the “stickiness” of the Markov chain in
this case.
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Figure 7: Left coloumn: trace plots for Markov chains obtained using the Metropolis ran-
dom walk algorithm in Exercise 8 when n = 1000. Centre column: histograms based on
the sampled chains. Right column: lag m auto-correlations for m = 1, . . . , 100 estimated
from the sampled chains. Top to bottom: σ = 0.005, 0.05, 0.5, respectively.

To demonstrate the methods of batch means and the initial sequence estimate, we have
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simulated three Markov chains by the Metropolis random walk algorithm in Exercise 8
when n = 50000 and σ = 0.005, 0.05, 0.5, respectively. Figure 8 shows Γ̂m estimated from
the three chains. The corresponding values of the initial sequence estimate τ̂conv are 33.8,
4.62 and 38.63, and the estimates σ̂2τ̂conv of the upper bound on the asymptotic variance
σ̄2 are 7.09 × 10−3, 9.97 × 10−4 and 7.89 × 10−3. Using batch means with n1 = 100
and n2 = 500 we obtain the following estimates of V ar(k̄n): 2.37 × 10−7, 1.56 × 10−8

and 2.05 × 10−7. Multiplying these numbers by n we obtain estimates of the asymptotic
variance σ̄2: 9.77× 10−3, 9.11× 10−4 and 7.11× 10−3. These figures are rather similar to
those obtained using the initial sequence estimate.
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Figure 8: Plots of Γ̂m estimated from three Markov chains generated using the random
walk algorithm in Exercise 8 with n = 50000 and (from left to right) σ = 0.005, 0.05, 0.5.
The vertical lines in each plot is located at Lconv.

10.3 Subsampling

Sometimes subsampling with a spacing s ≥ 2 is used, i.e. we use only the subchain
Xj, Xj+s, Xj+2s, . . . for some given j ∈ N0. There may be various reasons for using a sub-
sample: storage problems may be reduced if it is required to store a sample e.g. for plotting;
trace and auto-correlation plots may be more informative; and more efficient Monte Carlo
estimates may be obtained. It is not always optimal to use subsampling, however, if the
samples are highly auto-correlated and the evaluation of k(Xm) is expensive, then a large
spacing s may be desirable.
For theMarkov chainXj, Xj+s, Xj+2s, . . ., we proceed as above by substituting the original
chain by the subsampled chain. For example, the asymptotic variance of the Monte Carlo
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average

k̄s
n =

n−1
�

m=0

k(Xj+ms)/n

based on the subsampled chain is given by σ2τ s, where

τ s = 1 + 2
∞

�

m=1

ρms

is the integrated auto-correlation time for the subsampled chain.

11 A final application example and exercise

This section consists of two main parts. In the first part we consider an example of a so-
called Gibbs distribution, namely an Ising model. This distribution has been widely use in
the analysis of digital images, and the Gibbs sampler, when it was named so by Stuart and
Donald Geman in 1984, was applied on this model.
The second part concerns a Bayesian analysis of a data set related to archaeology. In this
analysis we use the Ising model as the prior, and we discuss how to handle missing values
in the data.

11.1 The Ising model

Consider the following situation: A rectangular region S is divided into J smaller disjoint
rectangular (sub)regions Si ⊆ S, so that S = ∪J

i=1Si. To each region Si associate a binary
variable Xi ∈ {0, 1}. We can think of Si as a pixel in a binary digital image S and Xi as
the “colour” of that pixel, in the sense that Xi = 0 corresponds to Si being a black pixel
and Xi = 1 corresponds to Xi being a white pixel.
For many applications it is natural to assume that neighbouring pixels are more likely to
have the same colour than pixels far apart. For this reason we let the binary vector X =
(X1, . . . , XJ) be distributed according to the Ising density

π(x) =
1

c(β)

J
�

i=1

exp(βui(xi)), x = (x1, . . . , xJ) ∈ {0, 1}J , (25)

where c(β) is the normalising constant and

ui(k) =
�

8-neighbours of Si

1[xj = k]
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Si’s 8 neighbour subregionsSi

Figure 9: Shaded regions correspond to the neighbour regions of Si.

is the number of 8-neighbours of Si with the colour k ∈ {0, 1}. More precisely, by “ 8-
neighbours of Si” we mean the (up to) 4 nearest neighbours and (up to) 4 second nearest
neighbours to “pixel” Si, see Figure 9. Notice that pixels at the border of S have less
than 8 neighbours. Further, notice that the notation ui(xi) is a bit misleading, since ui(xi)
depends not only on xi but the values xj with Sj a nearest or second nearest neighbour
to Si. Furthermore, β is a real parameter and c(β) is an unknown normalising constant
in the sense that it is infeasible to calculate c(β) (except for β = 0) even for moderate
values of J . In fact c(β) =

�

x

�J
i=1 exp(βui(xi)) where the sum is over the 2J different

possible configurations of x. For example, if J = 162 (as in the examples below) then
2J ≈ 1.16 × 1077.
To get a better understanding of (25) we consider the significance of β. For β = 0 we
have π(x) ∝ 1, soX is then uniformly distributed over the 2J possible configurations of x.
For β > 0 configurations of x containing many pairs of neighbouring pixels with the same
colour have higher probability than configuration with few pairs of neighbouring pixels
with the same colour. To see this notice that

J
�

i=1

exp(βui(xi)) = exp(β
J

�

i=1

ui(xi)),

where 1
2

�J
i=1 ui(xi) is the number of pairs of neighbour pixels in x with the same colour.

So for increasing β there is an increasing tendency towards preferring configurations of
X where many pairs of neighbour pixels have the same colour, i.e. resulting in clumps of
black and white pixels.
To get an even better understanding of (25) and the significance of β we want to produce
realisations of X for different values of β. Simulation of X can be done using a Gibbs
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sampler with a cyclic updating scheme where each pixel value Xi corresponds to a single
component. Thus we need the full conditionals:

A. Verify that the full conditional forXi, i = 1, . . . , J , is given by

π(xi|xi) =
exp(βui(xi))

�1
k=0 exp(βui(k))

, xi ∈ {0, 1}.

B. Implement a Gibbs sampler in R for producing approximate samples of (25) in the
case where S is divided into J = 16 × 16 subregions.

(a) It is convenient to considerX as a 16×16matrix and implement the sampler as
a function gibbs(X,beta,n) where the input (X,beta,n) corresponds
to the initial state X0, β and the number of Gibbs updates n. As output the
function should return the final state Xn of the chain (we can use image(x)
to view the state of a matrix x).

(b) Experiment with different choices of β, say β = 0, 0.2, 0.4, 0.6, and number of
Gibbs updates, say n = 1, 2, 5, 10, 25. How does the final stateXn change with
different choices of β? Does the choice of n have any influence on the final
state? You may also consider different choices ofX0, e.g. the zero-matrix
X <- matrix(0,16,16)

or a random matrix, e.g.
X <- matrix(rbinom(256,1,0.5),nrow=16).

Hint: (a) The number of neighbours of x[i,j] with value 1 can be counted by
sum(x[max(i-1,1):min(i+1,16),
max(j-1,1):min(j+1,16)]) - x[i,j]

The total number of neighbours of x[i,j] is given by
(min(i+1,16)-max(i-1,1)+1)*(min(j+1,16)-max(j-1,1)+1)-1

11.2 Analysis of archaeological data

In the following we consider a data set consisting of a grid of J = 16 × 16 soil measure-
ments y1, . . . , y256 of the log phosphate concentrations taken at 10 m intervals. Enhanced
soil phosphate content, the result of decomposition of organic material, is often found at
sites of known archaeological activity. Thus, measurements of phosphate concentration
over a study region can provide a useful aid in locating sites that are already known to
exist. We consider our data y = (y1, . . . , y256) to be a realisation of a stochastic vector
Y = (Y1, . . . , Y256) where Yi ∈ R. In the following we consider a Bayesian analysis of
these data assuming the following model structure:
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1. The distribution of each Yi depends on the realisation of a binary variableXi ∈ {0, 1}
with the following interpretation. The site Si is said to be archaeologically active if
Xi = 1, and archaeologically inactive otherwise. Specifically, conditional on Xi =
xi we assume that Yi is normal distributed with mean µ + Δxi and variance κ2. For
these data it is reported that µ = 1 and Δ = 1. The variance κ2 is so far treated as a
known parameter (at the end we discuss how to estimate κ2).

2. Conditional onX = (X1, . . . , X256) we assume that Y1, . . . , Y256 are independent.

3. A priori we assume thatX is distributed according to the Ising model (25), where we
so far treat β > 0 as a known parameter (at the end we also discuss how to estimate
β).

Notice that with the interpretation of Xi in 1. the prior assumption in 3. seems natural as
nearby sites would be expected to be more likely to have the same level of archaeological
activity than sites far apart.
Specification of the data distribution: The model assumptions 1. and 2. imply that the
conditional distribution ofY givenX = (x1, . . . , x256) has density

π(y|x) =
256
�

i=1

1√
2πκ2

exp

�

−1

2

(yi − µ − Δxi)
2

κ2

�

, y = (y1, . . . , y256) ∈ R
256. (26)

Specification of posterior distribution: As the prior distribution of X has density given by
(25), the conditional distribution ofX givenY = y has density

π(x|y) ∝ π(x)π(y|x)

∝
�

256
�

i=1

exp(βui(xi))

� �

256
�

i=1

exp(−(yi − µ − Δxi)
2/(2κ2))

�

=
256
�

i=1

exp(βui(xi) − (yi − µ − Δxi)
2/(2κ2)). (27)

Specification of full conditionals:

A. Verify that the full conditional forXi, i = 1, . . . , 256, is

π(xi|xi, y) =
exp(βui(xi) − (yi − µ − Δxi)

2/(2κ2))
�1

k=0 exp(βui(k) − (yi − µ − Δk)2/(2κ2))
. (28)
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Gibbs sampling: Given the full conditionals (28) it is in straightforward to implement a
Gibbs sampler for sampling from the posterior density (27): for simulation from the full
conditionals we simply use inversion.
Missing data: The data under consideration is not complete. In fact the phosphate concen-
tration has not been measured at all sites, so some yi are missing. Sampling (27) using a
Gibbs sampler then becomes a problem as the full conditionals in (28) depend on y.
We now consider briefly how to deal with missing data — a recurring situation in applied
statistics. Let Yobs denote the observed part and Ymis the missing part of Y . Then the
observed data is distributed according to

π(yobs|x) =

�

π(yobs, ymis|θ)dymis,

where the integral is replaced by a sum in the case of a discrete state space. Posterior
inference is then done as usual but with the density π(y|x) replaced by the data density
π(yobs|x), so the conditional distribution of X given Yobs = yobs has density

π(x|yobs) ∝ π(x)π(yobs|x).

Specification of data distribution: In the present setting recall that given X = x the com-
plete data is distributed according to

π(y|x) ∝
256
�

i=1

exp(−(yi − µ − Δxi)
2/(2κ2)).

Using the approach above for dealing with missing data

π(yobs|x) ∝
� 256

�

i=1

exp(−(yi − µ − Δxi)
2/(2κ2))dymis (29)

∝
�

yi is observed
exp(−(yi − µ − Δxi)

2/(2κ2)). (30)

This simple form is due to the model assumption 2.
Specification of the posterior distribution: The conditional distribution of X given Yobs =
yobs has density

π(x|yobs) ∝
256
�

i=1

exp(βui(xi))
�

yi is observed
exp(−(yi − µ − Δxi)

2/(2κ2)). (31)

Specification of full conditionals:
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B. Verify that

(a) if Yi is missing, the full conditional forXi does not depend on yobs, since

π(xi|xi, yobs) =
exp(βui(xi))

�1
k=0 exp(βui(k))

;

(b) if Yi is observed, the full conditional for Xi is the same as in the case with no
missing data, that is,

π(xi|xi, yobs) =
exp(βui(xi) − (yi − µ − Δxi)

2/(2κ2))
�1

k=0 exp(βui(k) − (yi − µ − Δk)2/(2κ2))
.

These simple forms are again due to the model assumption 2.

Gibbs sampling: In a Bayesian analysis of the archaeological data we want to estimate for
each site the posterior probability of that site being archaeologically active. We do this by
sampling the posterior distribution in accordance with (31) using a cyclic Gibbs sampler
where, as above, each activity level xi corresponds to a single component in the Gibbs
sampler.
Performing a Bayesian analysis of the archaeological data: The data is loaded into a 16×16
matrix y where missing values are given the value NA (this is the standard R notation for
missing value) using
y <- read.table("/user/kkb/julian.dat")
y <- as.matrix(y)
y[y==1.5] <- NA

The command is.na(x[i,j])will determine if x[i,j] has value NA. We need to use
an extra option na.rm=T for some commands in order that they ignore any occurrence of
NA.

C. Implement a Gibbs sampler for sampling (31) in R as a function
gibbs.2(X,beta,kappa,mu,Delta,n)

where the input (X,beta,kappa,mu,Delta,n) corresponds to the initial state
X0, the parameters β, κ, µ and Δ, and the number of cyclic Gibbs updates n. As
output the function should return both the final state Xn as a matrix and the mean
M = (M1, . . . ,M256) = 1

n+1

�n
i=0 Xi, also as a matrix. The quantityMi ∈ (0, 1) is

the estimated posterior probability that the site Si is archaeologically active.

Predicting unobserved variables: The conditional density for (Ymis) given X = x and the
data Yobs = yobs is

π(ymis|x, yobs) ∝ π(ymis|x) =
�

yi is missing

1√
2πκ2

exp(−(yi − µ − Δxi)
2/(2κ2))
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because of the model assumptions 1. and 2. In other words, given X = x and the data
Yobs = yobs, the unobserved Yi are independent and Yi is normally distributed with mean
µ+Δxi and variance κ2. Thus we can easily predict the unobserved Yi by simulating from
these independent normal distributions.
Choosing X0: Consider the following thresholding: for i = 1, . . . , 256 set x̂i = 1 if yi >
µ+Δ/2 and x̂i = 0 otherwise. An appropriate initial state is thenX0 = x̂ = (x̂1, . . . , x̂256).
In R this is done by
X <- matrix(0,16,16)
X[y>(mu + Delta*0.5)] <- 1

Choosing κ and β: The binary vector x̂ obtained via the thresholding above can be seen as
an naive estimate ofX. Given this estimate we can obtain an estimate of κ2 by

κ̂2 =
1

nobs

�

yi is observed
(yi − µ − Δx̂i)

2

where nobs denotes the number of observed phosphate concentrations.
One way to choose β is so that it maximises (25) when x = x̂— this is a so-called maxi-
mum likelihood estimate. As c(β) in (25) is unknown, maximum likelihood estimation is
far from straightforward. Instead initially assume that β = 0.8. As we have little knowl-
edge about how to choose β you should experiment with different values of β to see how it
affects the results of the analysis.
Dealing with unknown normalising constants: In the previous examples we have assumed
that a parameter like β is a realisation of a random variable B, say. The reader may wonder
why we have not done it here as we have little knowledge about what β should be. Assume
that β is in fact a realisation of a random variable B which is distributed according to a
hyper prior density π(β). Assume further that the above Gibbs sampler is replaced by a
Metropolis within Gibbs sampler whereXi is updated as before (using a Gibbs update) and
B is updated in accordance to the posterior density of (X,B), using e.g. a Metropolis ran-
dom walk update. If β is the current value of B and β � is the proposal, then the acceptance
probability would be

min

�

1,
π(x|y,β �)π(β �)

π(x|y,β)π(β)

�

, (32)

where π(x|y,β) is given by (27) (here we just have made the dependence on β explicit).
Evaluating (32) then involves evaluating a ratio c(β)/c(β �) of unknown normalising con-
stants making it impossible to apply the Metropolis algorithm as presented here. There
exists a number of solution to this problem.
One solution is to estimate the ratio of unknown normalising constants. One way of doing
this is based on importance sampling as follows. Assume that π(x|θ) = c(θ)−1f(x|θ)
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is a normalised density with unknown normalising constant c(θ) =
�

f(x|θ)dx. Let
X0, X1, . . . , Xn be a Markov chain with π(x|θ) as its equilibrium density, e.g. obtain using
a Metropolis-Hastings algorithm. Then

1

n + 1

n
�

i=0

f(xi|β�)

f(xi|β)

is an estimate of c(θ�)/c(θ). See Gelman & Meng (1998) for more details on this and other
more sophisticated ways of estimating ratios of unknown normalising constants. See also
Møller et al. (2004).

12 C in R

As you may have noticed R can be very slow when used for heavy computations. An
effective solution is to implement parts of the R code in C. Here we just consider a small
example of how to implement C in R. For more details see the help pages in R.
The following example implements a Metropolis randomwalk algorithm in R by calling the
C-function below. The Metropolis random walk algorithm has a standard normal density
as its target density. Proposals are uniformly distributed on an interval of length 2 centred
at the current value of the Markov chain.
First we make a file named MRW.c containing the following C code for the Metropolis
random walk algorithm:

#include <R.h>
/************************************/
/* Metropolis random walk algorithm */
/************************************/
void MetropolisRandomWalk(int *n, double *x, double *mc){
int i;
double u, proposal;
*mc = *x;
for(i=1; i<=*n; i++){

u = drand48();
proposal = *(mc+i-1)+2*drand48()-1;
if(u<= exp(0.5*(-pow(proposal,2)+pow(*(mc+i-1),2))))
*(mc+i) = proposal;
else *(mc+i) = *(mc+i-1);

}

}
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Before we can use the C code in R it should be compiled. In UNIX this is done by typing
the following command at the command prompt in an x-term window:
R CMD SHLIB -o MRW.so MRW.c
Note that this command applies to UNIX. For Windows another procedure applies.
To use the C code in R you then need the following piece of code
dyn.load("MRW.so")
Metropolis.random.walk <- function(n,x){
.C("MetropolisRandomWalk",as.integer(n),as.double(x),
mc=double(length=n))$mc

}
#* Demonstration

x <- Metropolis.random.walk(1000,0)
par(mfrow=c(3,1))
plot(x,type="l")
hist(x,freq=F)
z <- seq(min(x),max(x),length=1000)
lines(z,dnorm(z))
qqnorm(x)
abline(0,1)
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