Exercises for module 1
 Basics of probability theory

Exercise 1

A fair coin is tossed n times (where n is a given positive integer).

1. Specify the state space Ω and the probability measure P for all possible realisations of the sequence of coin tosses.
2. Let A be the event "the coin toss sequence contains both a head and a tail" and let B be the event that "there is at most one tail in the sequence". Determine $P(A), P(B)$, and $P(A \cap B)$.
3. Are A and B independent events?

Exercise 2

A number X is picked uniformly at random on the interval $[0,1]$, that is, for any $I \subseteq[0,1]$, we have $P(X \in I)=$ length of I. We say that X is uniformly distributed between 0 and 1 and write $X \sim \operatorname{unif}(0,1)$.

1. Specify the distribution function, density function, mean, and variance of X.
2. What is the probability that the first decimal of X is equal to 1 .

Exercise 3

A random variable X is said to follow an exponential distribution with parameter $\lambda>0$ if X has density

$$
f_{X}(x)=\lambda \exp (-\lambda x), \quad x>0
$$

(meaning that $f_{X}(x)=0$ if $x \leq 0$).

1. Determine the distribution function and the mean of X.
2. For any numbers $s>0$ and $t>0$, find $P(X>t+s \mid X>s)$ and interpret the result.
