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Let m(x) be the target density, i.e. the density we want to sample from.

Choose initial value z(©).
Fort=1,2,...,T
1. Generate proposal:  y ~ g(z(*=1 y).
2. Accept proposal with probability: a(z®=1,y)
otherwise reject it.
3. If accepting: z(H) =y
4. If rejecting:  x®) = g1

This algorithm generates a realisation of a time homogeneous Markov
chain.
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Provides a specific choice of a(x,y) when ¢(x,y) has been specified:

m Choose any proposal kernel g(z,y).
m Define the Hastings ratio

m(y)q(y, x)

)

b

where H(z,y) = oo if w(x)q(z,y) = 0.
B The acceptance probability is

a(z,y) =min {1, H(x,y)} .

Then 7 is invariant; we need to check irreducibility; even better if also
aperiodic — see previous lecture.
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This is the special case of the MH-algorithm when the proposal kernel is
symmetric:

q(z,y) = q(y, z).
In this case the Hastings ratio simplifies to

Hiz,y) = m(y)aly,x) _ 7(y)

m(z)q(x,y) w(x)

Example: The most common example is the random walk Metropolis
algorithm, i.e. when ¢(z,y) = qo(z — y) where ¢o is a symmetric
function. For example, if the proposal is normally distributed with mean x
and precision 7, (user-specified):

T 1
q(z,y) = ﬁ exp (—2Tp(y - 93)2) :

Then, q(z,y) = qo(y — x) where qo(z) = ‘/2% exp (—%sz2)
is symmetric.
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® Generate X(©) ~ 7q(z); its distribution is called the initial
distribution; it is typically different from 7(z).

m Create an irreducible Markov chain X(© XM X® having
m(x) as invariant distribution.

m For small values of ¢, the distribution of X(*) can be quite
different from 7(x).

m As a consequence, the sample mean
1 X
il (®)
72X
t=1

is biased, i.e. E |+ 5/, X)] £ pu.

m Instead consider .
1
el (m+t)
72 X,
t=1

where m is the length of the burn-in.
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Histogram of x[1:200]
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Assume we have independent samples X", X2 X (T) from 7(x).
Assume E[X®)] = p and Var[X®] = o2.
The sample mean is

1 I
- ZX(t)
rs

and we have the following results:

s ;
e[ 13| <
L™ =1

[1 & : 1
Var | — E O | = — 52
o Tt_1 T’
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T-Var | =Y XW| =0
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Assume XM, X2 XG)  are one-dimensional and form an irreducible
Markov chain with invariant density 7(z).

Further, assume that X ~ 7. Then X®) ~ 7 for t = 1,2,3, ..., and so
E[X®] =y and Var[X®] = o2 for t = 1,2,3,....

The expected value of the sample mean is

E

1 X
E ®| =
T X ]—u.
t=1

So the expected value of the sample mean is unaffected by the shift from
an IID sample to a Markov chain.
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B Regarding the variance, under mild conditions, as T' — oo,

T s}
;];ZX(“] L o? (1 +2Zpi)
t=1 =1

T -Var

where
E[(X® — p) (X — )]

o2

pi = Corr(X(t)7X(t+i)) =

is the lag-i auto-correlation when assuming X () and X *#*%) follow
TT.

m We call 02 (1+2):2, p;) the asymptotic variance, and
T=1+42 Zfil p; the asymptotic correlation. NB: 7 > 0.

m Trade-off: a small value of T (i.e., negative correlations) seems like a
good idea when estimating p, but theory shows that an aperiodic
and irreducible MC will then typically convergence slowly to .

m In fact MH algorithms have often positive correlations (see the next
example...)
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The following is an example of tuning a MH algorithm: Consider a
random walk Metropolis algorithm where the proposal kernel is

q(z,y) = \/gexp <;Tp(y - I)Q) .

Here, 7, is a “user-specified/tuning/algorithm parameter’, but what is a
good choice?

Example: On one hand, if the target density is a standard normal,

| e (1)

the optimal choice of 7, (in terms of reducing the asymptotic variance) is
so that the acceptance probability in average is around 0.4.

On the other hand, if m(x1,z2,...,2) is multivariate normal (& large),
the optimal choice of 7, corresponds to an acceptance probability of
0.234.

Practice for random walk Metropolis: aim at in average 20-40% (or
15-45%) for the acceptance probability.
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acceptance prob.: 0.024
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Target: N((0,0), [O 1)9 0,?9] ) (upper left panel).

Gibbs sampling: somewhat " slow mixing”.

A prob.: 1
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Target: N((0,0), [0.199 0'39] ) (upper left panel).

Random walk Metropolis where g is the density of a zero-mean bivariate

00

normal distribution with covariance matrix :
[ 0 100]

"very poor
mixing’ .
o —Acceptance prob.: 0.0016
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Target: N((O70), [0.99 1 ] ) (upper left panel).

Using instead the covariance matrix [(1) ﬂ

somewhat "slow mixing".

Acceptance prob.: 0.1196
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Target: N((0,0), [0.1)9 0'?9] ) (upper left panel).
0.01 0
0 0.01

Acceptance prob.: 0.6892
o

Using instead the covariance matrix [ }: " poor mixing”.
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Target: N((0,0), [

Using instead the covariance matrix

mixing” (

0
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still a longer
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run would be good).

] ) (upper left panel).
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A purely theoretical result:

Assume target is a d-dimensional normal:
m(x) ~ Na(p, )

and the proposal is
q(x, ) ~ Ng(x,3,).

Then, as d — oo, the optimal choice of the proposal variance is

2.382
5, =2y
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Aim: We want to sample 8 = (01,02, ...,0;) from a density m(0), where
0; € Q; CR% and 7(6) > 0 for all
0 xQyx--xQy CRATdFdi

Then we generate an approximate sample from w(0) as follows:

® Choose initial value 8 = (8”65 ... (7).
mFort=1,2,...,T
» Fori=1, 2 k

1. Generate 9(” w6165, ...,089,,607 .. 67 D)

Question: What if we cannot generate samples from one or more of the
full conditional distributions?

Solution: Use a Metropolis-Hastings update instead!
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m Choose initial value 8(©) = (0§0),6§0), ... ,9,(60)).
mFort=1,2,...,T

» Fori=1,2,...,k, cond. on --- = (9?),...,Ogt_)l,&z(t_l),...,el(:_l))

1. generate proposal 6] ~ q(6}|---) (NB: may depend on 9?71))
2. calculate Hastings ratio

(t) () t=1) (t-1)
lfen 1) = m(@16”,...,60 60, e Y)

= X
Il N N e P Gt

%1% T

G ST N O )

q(016%",..., 6% 61 el

3. with probability
min {1, H(--- ;6;)}
set 01@ = 0] (accept) otherwise set 910) = 0?71) (reject).

Remark: For H(--- ;6}) we can work with 7w(+|---) o .. ..
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Notice that each component update keeps 7(6) as its invariant
distribution, and so the MwG algorithm has 7(0) as its invariant
distribution.

Special case: Assume that at some iteration 7 of each sweep,

g0 ---) = (@16, ..., 600 el
om0, ..., 00,0000 0l

(i.e., just a Gibbs sampler type update at iteration ¢). Then
H(---;6;) =1, hence all proposals are accepted at iteration i.

So the Gibbs sampler is just the special case of MwG where all
proposals are simulations from the full conditionals!

Irreducibility is not automatically fulfilled. In brief, okay if the state
space is a product space 2 =3 X -+ x Q and ¢(0;|---) > 0 for
i=1,....k
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