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Motivating example: Spelling correction

(Adapted from Bayesian Data Analysis by Gelman et al. (2014))

� Problem: Someone types ’radom’.

� Question: What did they meant to type? Random?

Ingredients:

� Data x: The observed word — radom.

� Parameter of interest θ: The correct word.

Comments: To solve this we need

� background information on which words similar to radom could be
typed;

� an idea about how these words are typically mistyped.
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Bayesian idea

� Data/observation model: Conditional on θ (here the correct word),
data x (here the typed word) is distributed according to a density

π(x|θ) ∝ L(θ;x) ← the likelihood.

� Prior: Prior knowledge (i.e. before collecting data) about θ is
summaried by a density

π(θ) ← the prior.

� Posterior: The updated knowledge about θ after collecting data:
The conditional distribution of θ given data x is by Bayes theorem

π(θ|x) =
π(x|θ)π(θ)

π(x)

∝ π(x|θ)π(θ)

(‘posterior ∝ likelihood× prior′).

Bayesian statistics, simulation and software Jesper Møller and Ege Rubak



4/14

Example: Prior

Google provides the following prior probabilities for three candidate words:

θ π(θ)
random 7.60× 10−5

radon 6.05× 10−6

radom 3.12× 10−7

Comments

� The relative high probability for the word radom is perhaps
surprising: Name of a city in Poland and of a semiautomatic pistol of
Polish design.

� Probably, in the context of writing a scientific report these prior
probabilities should be different.
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Example: Likelihood

Google’s model of spelling and typing errors provides the following
conditional probabilities/likelihoods:

θ π(x = ’radom’|θ)
random 0.00193
radon 0.000143
radom 0.975

Comments

� This is not a probability distribution but a likelihood function!

� If one in fact intends to write ’radom’ this actually happens in
97.5% of cases.

� If one intends to write either ’random’ or ’radon’ this is rarely
misspelled ’radom’.
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Example: Posterior

Combining the prior and likelihood we obtain the posterior probabilities:

π(θ|x) =
π(x|θ)π(θ)

π(x)
∝ π(x|θ)π(θ)

θ π(x = ’radom’|θ)π(θ) π(θ|x = ’radom’)
random 1.47× 10−7 0.325
radon 8.65× 10−10 0.002
radom 3.04× 10−7 0.673

Conclusion

� With the given prior and likelihood the word ’radom’ is twice as
likely as ’random’.

Criticism

� Is the posterior probability for ‘radom’ too high?

� Prior depends on context — and hence might be ‘wrong’.

� Likelihood is perhaps OK in this case – or it could depend on
context as well.
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Binomial model in a Bayesian context

� Data model: Binomial, X ∼ B(n, p), n known.

π(x|p) =

(

n

x

)

px(1− p)n−x, x = 0, 1, . . . , n, 0 ≤ p ≤ 1.

� Prior: A convenient choice is a Beta distribution:

π(p) ∼ Be(α, β),

where we have to specify the shape parameters α > 0 and β > 0.
The Beta distribution has density/pdf

π(p) =

{

Γ(α)Γ(β)
Γ(α+β) p

α−1(1− p)β−1 for 0 ≤ p ≤ 1

0 otherwise.

If α = β = 1, then π(p) = 1 for 0 ≤ p ≤ 1 (the uniform distribution).
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Beta distribution: Examples
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Binomial model in a Bayesian context (continued)

� Data model:X ∼ B(n, p).

� Prior: π(p) ∼ Be(α, β), that is

π(p) =

{

Γ(α)Γ(β)
Γ(α+β) p

α−1(1− p)β−1 for 0 ≤ p ≤ 1

0 otherwise.

� Posterior:

π(p|x) ∝ π(x|p)π(p)

=

(

n

x

)

px(1− p)n−x ·
Γ(α)Γ(β)

Γ(α+ β)
pα−1(1− p)β−1

∝ px+α−1(1− p)n−x+β−1

∼ Be(x+ α, n− x+ β).
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Posterior mean & variance

Posterior
π(p|x) ∼ Be(x+ α, n− x+ β).

Posterior mean

E[p|x] =
x+ α

(x+ α) + (n− x+ β)
=

x+ α

α+ β + n
.

If n≫ max{α, β}, then E[p|x] ≈ x
n
(the ”natural”unbiased estimate).

Posterior variance

Var[p|x] =
(x+ α)(n− x+ β)

(x+ α+ n− x+ β)2(x+ α+ n− x+ β + 1)

=
(x+ α)(n− x+ β)

(α+ β + n)2(α+ β + n+ 1)

=
( x
n
+ α

n
)(n−x

n
+ β

n
)

(α+β+n

n
)2(α+ β + n+ 1)

≈
x
n

n−x
n

α+ β + n+ 1
→ 0 as n→∞.
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Conjugate priors

In the binomial example: Both prior and posterior were beta distributions!
Very convenient!

We say that the beta distribution is conjugate.

Definition: Conjugate priors

Let π(x|θ) be the data model. A class Π of prior distributions for θ is
said to be conjugate for π(x|θ) if

π(θ|x) ∝ π(x|θ)π(θ) ∈ Π

whenever π(θ) ∈ Π. That is, prior and posterior are in the same class of
distributions.

Notice: Π should be a class of “tractable” distributions for this to be
useful.
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Example: Placentia Previa (PP)

� Question: Is the sex ratio different for PP births compared to
normal births?

� Prior knowledge: 48.5% of new-borns are girls.

� Data: Of n = 980 cases of PP x=437 were girls (437/980=44.6%).

� Data model: X ∼ B(n, p).

� Prior: π(p) ∼ Be(α, β).

� Posterior:

π(p|x) ∼ Be(x+ α, n− x+ β)

= Be(437 + α, 543 + β)

How to choose α and β, and what difference does it make?
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Placenta Previa: Beta priors and posteriors
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Conclusion (see the notes or Gelman et al. (2014))

For the different choices of priors, 95% posterior intervals (as defined
later) for p do not contain 48.5%, which indicates that the probability for
a female birth given placenta previa is lower than in the general
population.
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