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Reminder: The Bayesian idea

� Data model: Given parameter θ the data, X, is assumed to be
distributed as

X ∼ π(x|θ).

� Parameter θ of interest is unknown.

� A priori knowledge is summarised in terms of prior density

π(θ).

� Conditional on the observed data x, we obtain the posterior density

π(θ|x) ∝ π(x|θ)π(θ).

� All conclusions regarding θ are based on the posterior.
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Example: Blood pressure

Setup: A group of n = 38 patients with high blood pressure are given a
new drug.

Let xi denote the change in blood pressure, i = 1, . . . , n (xi < 0 is
”good”).

Data:

Histogram of change in BP
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Data model:
x1, . . . , x38

iid
∼ N (µ, τ).

Question: Is there a positive effect of the drug, that is, µ < 0?
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Bayesian analysis of blood pressure

Prior: (assume τ known)

π(µ) ∼ N (µ0, τ0).

Posterior:

π(µ|x) ∼ N

(

nτx̄+ τ0µ0

nτ + τ0
, nτ + τ0

)

.

Question: What is the posterior probability that µ < 0 (the (mean)
effect of the drug is “good”)? That is, calculate

P (µ < 0|x).

Answer: P (µ < 0|x) = 0.975 (using the normal posterior from above
with a certain choice of the values of τ, µ0, τ0 – here, it is not important
what these values are – we just want to discuss answers obtained by
simulations).
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Monte Carlo: Simulating an answer (imaging we couldn’t
do the calculation above)

� Notice that P (µ < 0|x) = E

[

1[µ < 0]

∣

∣

∣

∣

x

]

.

� Simulate µ(1), µ(2), . . . , µ(1000) ∼ N
(

nτx̄+τ0µ0

nτ+τ0
, nτ + τ0

)

.

Histogram:

D
e

n
s
it
y

−20 −15 −10 −5 0 5

0.00

0.02

0.04

0.06

0.08

0.10

� Monte Carlo estimate of P (µ < 0|x):
1

1000

∑1000
i=1 1[µ(i) < 0] = 0.981 (close to the correct value 0.975).
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New problem

� The posterior is π(θ|x) ∝ π(x|θ)π(θ).

� Note that π(x|θ)π(θ) is not a normalised density (unless π(x) = 1).

Assume the following is a plot of π(x|θ)π(θ) vs θ:

0 1 2 3 4 5 6 7−1

π(x|θ)π(θ)

θ

Question: What is the probability P (θ > 5|x)?

A ”half answer”: Simulations of π(θ|x) could answer this.

Problem: Often π(θ|x) is not (proportional to) a well-known density.

Solution: Use Markov chain Monte Carlo (MCMC) methods...
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Markov chain: Mathematical definition

Definition: Markov chain

A sequence of random variables (X(0), X(1), X(2), . . .) with state space
Ω is called a time-homogeneous Markov chain if for all events A ⊆ Ω, all
times t = 0, 1, . . . and all states x(0), x(1), . . . , x(t) ∈ Ω, we have

P (X(t+1) ∈ A|X(0) = x(0), X(1) = x(1), . . . , X(t) = x(t))

= P (X(t+1) ∈ A|X(t) = x(t))

= P (x(t), A),

where P (x,A) is called the transition kernel.

Example of a time-homogeneous Markov chain: A Gibbs sampler after
each sweep.

Bayesian statistics, simulation and software Jesper Møller and Ege Rubak



8/18

Markov chain: A more useful definition for implementations

Definition: Markov chain

A sequence of random variables (X(0), X(1), X(2), . . .) with state space
Ω is called a time-homogeneous Markov chain if

X(t+1) = φ(X(t), U (t)), t = 0, 1, . . . ,

where φ is a deterministic function (the ”update function”) and
U (0), U (1), . . . are IID (multivariate) RVs (the ”random bits”).

In practice the update function and the random bits are given by your
computer code!
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Markov chain

Definition: n-step transition kernel

For any t = 0, 1, . . . and n = 1, 2, . . ., the n-step transition kernel is

Pn(x,A) = P (X(t+n) ∈ A|X(t) = x).

That is, for t = 0 and conditional on X(0) = x we consider the
distribution of

X(1) = φ(x, U (0)) (n = 1, i.e. one step),

X(2) = φ(X(1), U (1)) = φ(φ(x, U (0)), U (1)) (n = 2, i.e. two steps),

X(3) = φ(X(2), U (2)) = φ(φ(φ(x, U (0)), U (1)), U (2)) (n = 3, i.e. three steps),

...
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Simulating more answers

The Gibbs sampler relied on generating samples from standard/tractable
distributions for the full conditionals. What if we want to sample from a
non-standard density?

Let π(x) be a target density, i.e. a density we want to sample from (e.g.
a posterior density).

As an example, we may want to generate a sample from this density:

0 1 2 3 4 5 6 7−1

π(x)

x

Idea: Want to generate a Markov chain (X(0), X(1), X(2), . . .) so that
X(t) (for sufficiently large t) is (approximately) a sample from the density
π(x).
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Propose and accept/reject algorithm

Let π(x) be our target density, and for each given x, let q(x, y) be a
density w.r.t. y, and let a(x, y) be a probability (i.e. 0 ≤ a(x, y) ≤ 1).

Propose and accept/reject algorithm for a homogeneous
Markov chain

Choose initial value X(0) = x(0).
For t = 1, 2, . . . , T
1. Generate (a new) proposal Y = y ∼ q(X(t−1), y).
2. Accept proposal with probability a(X(t−1), y)

otherwise reject it. That is, generate (a new) U = u ∼ Unif(0, 1),
and

3. if acceptance, i.e. u ≤ a(X(t−1), y): X(t) = y;
4. else reject: X(t) = X(t−1).

Main problem: How do we choose q(x, y) and a(x, y) so that
(approximately/effectively) X(t) ∼ π(x) (for large t)? We will be flexible
with the choice of proposal density q(x, y), which then will determine the
acceptance probability a(x, y) as explained later.
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Example of the random walk Metropolis Algorithm

Recall that we want to generate a sample from a distribution with this
density:

0 1 2 3 4 5 6 7−1

π(x)

x

One possibility is a so-called random walk Metropolis algorithm, with
a normal proposal distribution centred at the current value, and with a
user-specified precision τp:

q(x, y) =

√

τp

2π
exp

(

−
1

2
τp(y − x)2

)

.

Then the acceptance probability becomes

a(x, y) = min

{

1,
π(y)

π(x)

}

.
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Results: 100 iterations
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Results: 1000 iterations
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Results: 10000 iterations
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The Metropolis-Hastings algorithm

A very flexible/general MCMC algorithm is the Metropolis-Hastings

algorithm: The user specifies a proposal kernel q(x, y), and the
algorithm then uses the correct acceptance probability a(x, y):

Metropolis-Hastings algorithm

� Choose any proposal kernel q(x, y) (i.e. q(x, ·) is a density for any x).
� Define the Hastings ratio

H(x, y) =
π(y)q(y, x)

π(x)q(x, y)
,

where H(x, y) = ∞ if π(x)q(x, y) = 0.
� The acceptance probability is

a(x, y) = min {1, H(x, y)} .

Remark: We need only to know π(x) ∝ π0(x) (an ”unnormalized

density”). So useful when dealing with a posterior density
π(θ|x) ∝ π0(θ) = π(θ|x)π(θ).

Bayesian statistics, simulation and software Jesper Møller and Ege Rubak



17/18

The Metropolis algorithm

A special case of the MH-algorithm is when the proposal density is
symmetric:

q(x, y) = q(y, x).

Then the Hastings ratio simplifies to

H(x, y) =
π(y)q(y, x)

π(x)q(x, y)
=

π(y)

π(x)
.

Example: The most common example is the random walk Metropolis
algorithm with normal proposals, i.e. when the proposal is normally
distributed with x as the mean value and τp as the (user-specified)
precision:

q(x, y) =

√

τp

2π
exp

(

−
1

2
τp(y − x)2

)

.

Clearly, q(x, y) = q(y, x).
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The independent Metropolis-Hastings algorithm

Another special case is when the proposal density is independent of the
current state x:

q(x, y) = q(y).

However, the Hastings ratio

H(x, y) =
π(y)q(y, x)

π(x)q(x, y)
=

π(y)q(x)

π(x)q(y)

depends on both the current state x and the proposal y.

This independent Metropolis-Hastings algorithm is mainly of theoretical
interest or when developing generic software.

In practice the acceptance probabilities may often be small, meaning that
the Markov chain easily get stuck in the same state for a long time, and
hence one may prefer to use another Metropolis-Hastings algorithm.
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