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(Adapted from Bayesian Data Analysis by Gelman et al. (2014))

m Problem: Someone types 'radom’.
B Question: What did they meant to type? Random?

Ingredients:
m Data x: The observed word — radom.
m Parameter of interest 0: The correct word.

Comments: To solve this we need

m background information on which words similar to radom could be
typed;

B an idea about how these words are typically mistyped.
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m Data/observation model: Conditional on 6 (here the correct word),
data x (here the typed word) is distributed according to a density

m(x]|0) < L(0;x) < the likelihood.

m Prior: Prior knowledge (i.e. before collecting data) about 6 is
summaried by a density

m(0) < the prior.

m Posterior: The updated knowledge about 6 after collecting data:
The conditional distribution of 6 given data z is by Bayes theorem

m(x|0)m(0)
m(z)
x 7(x|0)m(0)

(‘posterior o likelihood x prior’).

Bayesian statistics, simulation and software Jesper Mgller and Ege Rubak

w(0|z) =



Google provides the following prior probabilities for three candidate words:

0 ()

random 7.60 x 10~°

radon 6.05 x 10~

radom  3.12x 1077
Comments

m The relative high probability for the word radom is perhaps

surprising: Name of a city in Poland and of a semiautomatic pistol of
Polish design.

m Probably, in the context of writing a scientific report these prior
probabilities should be different.
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Google's model of spelling and typing errors provides the following
conditional probabilities/likelihoods:

0 m(x = 'radom’|6)

random 0.00193
radon 0.000143
radom 0.975

Comments
m This is not a probability distribution but a likelihood function!

m If one in fact intends to write 'radom’ this actually happens in
97.5% of cases.

m If one intends to write either 'random’ or 'radon’ this is rarely
misspelled 'radom’.
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Combining the prior and likelihood we obtain the posterior probabilities:

_ m(x|0)m(0)
0 7(x = 'radom’|0)w(0) 7(0]z = 'radom’)
random 1.47 x 10~7 0.325
radon 8.65 x 10~19 0.002
radom 3.04 x 1077 0.673

Conclusion

m With the given prior and likelihood the word 'radom’ is twice as
likely as 'random’.

Criticism
m Is the posterior probability for ‘radom’ too high?
m Prior depends on context — and hence might be ‘wrong’.

m Likelihood is perhaps OK in this case — or it could depend on
context as well.
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m Data model: Binomial, X ~ B(n,p), n known.

Tr(xp)—(Dpz(lp)"z, r=0,1,...,n, 0<p<1

m Prior: A convenient choice is a Beta distribution:

m(p) ~ Be(a, B),

where we have to specify the shape parameters o > 0 and 3 > 0.
The Beta distribution has density/pdf

T'(a+p3)

(p) = Tt L =)t for0<p<1
0 otherwise.

If « =8 =1, then w(p) =1 for 0 < p <1 (the uniform distribution).
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m Data model: X ~ B(n,p).
m Prior: w(p) ~ Be(a, ), that is

T(@)T(B) a— _
7(p) = I‘((a+(ﬁ))p (1-p)Pf~t for0<p<i
0 otherwise.

m Posterior:

m(plx) o< w(z|p)m(p)
_ (Z)p“”(l—p)”‘“” : Wﬁ“‘l(l—p)ﬁ_l

z+a71(1 _ )nfa:+571

xXp p
~ Be(x + a,n —x + ).
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Posterior
7(p|z) ~ Be(x + a,n — x + ).

Posterior mean

E _ T+« _ rxHa
Ipla] = (z+a)+(n—2+B) a+B+n’

If n > max{c, B}, then E[p|z] =~ £ (the "natural” unbiased estimate).

Posterior variance

(z+a)(n—x+p)
(x4+a+n—z+p)2(x+a+n—az+5+1)
(x+a)(n—z+p)
(a+pB+n)2(a+B+n+1)
(£+g>(u+é) T n—x

= n__n-ton n ~ non —+0 asn — oo.
(204 B4n+1)  at+B+ntl

Var[p|z] =
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In the binomial example: Both prior and posterior were beta distributions!
Very convenient!

We say that the beta distribution is conjugate.

Let 7(x|@) be the data model. A class II of prior distributions for 6 is
said to be conjugate for 7(x|0) if

w(0|z) < 7(z|0)m(0) € 11

whenever 7(6) € II. That is, prior and posterior are in the same class of
distributions.

Notice: II should be a class of “tractable” distributions for this to be
useful.
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® Question: Is the sex ratio different for PP births compared to
normal births?

Prior knowledge: 48.5% of new-borns are girls.

Data: Of n = 980 cases of PP x=437 were girls (437/980=44.6%).
Data model: X ~ B(n,p).

Prior: m(p) ~ Be(a, ).

Posterior:

w(plz) ~ Be( + a,n—z + )
= Be(437 4 a, 543 + f3)

How to choose a and 3, and what difference does it make?
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Bayesian statistic:
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For the different choices of priors, 95% posterior intervals (as defined
later) for p do not contain 48.5%, which indicates that the probability for
a female birth given placenta previa is lower than in the general
population.
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