Bayesian statistics, simulation and software

Module 11: A mixture model

Jesper Møller and Ege Rubak

Department of Mathematical Sciences
Aalborg University

Mixture model

Conditional on parameters
$\theta=\left(\theta_{1}, \ldots, \theta_{k}\right), \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \quad$ with $\lambda_{1}, \ldots, \lambda_{k} \geq 0, \sum_{j}^{k} \lambda_{j}=1$,
suppose that Y_{1}, \ldots, Y_{n} are IID random variables with density $\pi\left(y_{i} \mid \lambda, \theta\right)=\lambda_{1} \pi_{1}\left(y_{i} \mid \theta_{1}\right)+\lambda_{2} \pi_{2}\left(y_{i} \mid \theta_{2}\right)+\cdots+\lambda_{k} \pi_{k}\left(y_{i} \mid \theta_{k}\right), \quad i=1, \ldots, n$, where $\pi_{j}\left(y_{i} \mid \theta_{j}\right)$ is a density for a j th "component" which is selected with probability $\lambda_{j}, j=1, \ldots, k$. E.g. $\pi_{j}\left(y_{i} \mid \theta_{j}\right) \sim \mathcal{N}\left(\mu_{j}, \tau_{j}\right)$ and $\theta_{j}=\left(\mu_{j}, \tau_{j}\right)$. We call $\pi\left(y_{i} \mid \lambda, \theta\right)$ a k component mixture density with mixture weights $\lambda_{1}, \ldots, \lambda_{k}$ (they specify a probability distribution).

Two applications/purposes

k component mixture density with mixture weights $\lambda_{1}, \ldots, \lambda_{k}$:
$\pi\left(y_{i} \mid \lambda, \theta\right)=\lambda_{1} \pi_{1}\left(y_{i} \mid \theta_{1}\right)+\lambda_{2} \pi_{2}\left(y_{i} \mid \theta_{2}\right)+\cdots+\lambda_{k} \pi_{k}\left(y_{i} \mid \theta_{k}\right), \quad i=1, \ldots, n, I I D$.

1 Cluster analysis: Want to group the n observations into (at most k) clusters corresponding to the unknown selection of components.
2 Density estimation: View it as a flexible model for modelling densities (if $k=\infty$ it is often called nonparametric density estimation when considering the posterior distribution of $\pi(\cdot \mid \lambda, \theta)$ - we let $k<\infty)$.

Mixture model

Often in textbooks one is just given a mixture density (together with some unobserved axillary variables as defined on the next slide) and one uses the 'EM-algorithm for missing data' when finding what one hopes is the MLE of (λ, θ).
Instead we will use a "fully Bayesian approach": Its posterior distribution provides information not only about (θ, λ) (i.e., density estimation) but also about the selection of components (cluster analysis).

A hierarchical model introducing auxiliary variables

Conditioned on parameters
$\theta=\left(\theta_{1}, \ldots, \theta_{k}\right), \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \quad$ with $\lambda_{1}, \ldots, \lambda_{k} \geq 0, \sum_{j}^{k} \lambda_{j}=1$,
suppose that Z_{1}, \ldots, Z_{n} are IID random variables ('auxiliary variables') with

$$
P\left(Z_{i}=j \mid \lambda, \theta\right)=\lambda_{j}, \quad j=1, \ldots, k, i=1, \ldots, n .
$$

Then conditioned on both (θ, λ) and

$$
Z=\left(Z_{1}, \ldots, Z_{n}\right)=z=\left(z_{1}, \ldots, z_{n}\right),
$$

we can assume that Y_{1}, \ldots, Y_{n} are independent and each Y_{i} has (conditional) density

$$
\pi\left(y_{i} \mid \lambda, \theta, z\right)=\pi_{z_{i}}\left(y_{i} \mid \theta_{z_{i}}\right) .
$$

Missing data problem

Notice we have only observed $Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}$ (the data), i.e., the corresponding realization $Z_{1}=z_{1}, \ldots, Z_{n}=z_{n}$ is not observed (the auxiliary variables are 'missing data').
We refer to $y=\left(y_{1}, \ldots, y_{n}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$ as the full data.

"Full likelihood = likelihood for data and missing data"

We have

$$
\pi\left(y_{i} \mid \lambda, \theta, z\right)=\pi_{z_{i}}\left(y_{i} \mid \theta_{z_{i}}\right)=\prod_{j=1}^{k} \pi_{j}\left(y_{i} \mid \theta_{j}\right)^{1\left[z_{i}=j\right]}
$$

and

$$
P\left(Z_{i}=z_{i} \mid \lambda, \theta\right)=P\left(Z_{i}=z_{i} \mid \lambda\right)=\lambda_{z_{i}}=\prod_{j=1}^{k} \lambda_{j}^{\left[\left[z_{i}=j\right]\right.}
$$

so the joint density for the observations and missing variables (the so-called "full likelihood") is
$\pi(y, z \mid \lambda, \theta)=\prod_{i=1}^{n} \pi_{z_{i}}\left(y_{i} \mid \theta_{z_{i}}\right) P\left(Z_{i}=z_{i} \mid \lambda\right)=\prod_{i=1}^{n} \prod_{j=1}^{k}\left(\pi_{j}\left(y_{i} \mid \theta_{j}\right) \lambda_{j}\right)^{1\left[z_{i}=j\right]}$.

Prior

We (typically) assume a priori that

- θ and λ are independent;
- $\theta_{1}, \ldots, \theta_{k}$ are independent;
$\square \theta_{j} \sim \pi_{j}, j=1, \ldots, k$ (densities depending on the problem at hand, e.g. $\theta_{j}=\left(\mu_{j}, \tau_{j}\right) \sim \mathcal{N}\left(\mu_{j 0}, \tau_{j 0}\right) \times \operatorname{Gamma}\left(\alpha_{j}, \beta_{j}\right)$ or see exercise $)$;

■ e.g. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ could be uniformly distributed on the ($k-1$)-dimensional simplex

$$
\Delta_{k-1}=\left\{\left(p_{1}, \ldots, p_{k}\right) \in[0,1]^{k}: \sum_{j=1}^{k} p_{j}=1\right\}
$$

(the set of probability distributions on $\{1,2, \ldots, k\}$); this is an example of a so-called $\operatorname{Dirichlet}(1, \ldots, 1)$-distribution;

- let us assume

$$
\lambda \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)
$$

(see next slide).

Dirichlet distribution

Definition: Let $k \geq 2$ be an integer. A k-dimensional random vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ follows a Dirichlet distribution with parameters $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in(0, \infty)^{k}$ if $\left(\lambda_{1}, \ldots, \lambda_{k-1}\right)$ has density
$\pi\left(\lambda_{1}, \ldots, \lambda_{k-1} \mid \alpha\right) \propto \prod_{j=1}^{k} \lambda_{j}^{\alpha_{j}-1}$
where $\lambda_{j} \in[0,1]$ for $j=1, \ldots, k-1$ so that $\lambda_{k}:=1-\sum_{j=1}^{k-1} \lambda_{j} \in[0,1]$.

- Uniform on Δ_{k-1} if $\alpha_{1}=\ldots=\alpha_{k}=1$.
- $\operatorname{Dirichlet}\left(\alpha_{1}, \alpha_{2}\right)=\operatorname{Be}\left(\alpha_{1}, \alpha_{2}\right)$ (the case $k=2$).
- Simulation is easy: If $X_{1} \sim \Gamma\left(\alpha_{1}, 1\right), \ldots, X_{k} \sim \Gamma\left(\alpha_{k}, 1\right)$ are independent and $S=X_{1}+\ldots+X_{k}$, then

$$
\left(\frac{X_{1}}{S}, \ldots, \frac{X_{k}}{S}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)
$$

Graphical representation

■ $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$.

- Given λ :

$$
P\left(z_{i}=j \mid \lambda\right)=\lambda_{j}, \quad j=1, \ldots, k, \quad i=1, \ldots, n
$$

- Given λ, θ, z :
y_{i} has density $\pi_{z_{i}}\left(y_{i} \mid \theta_{z_{i}}\right), i=1, \ldots, n$.
■ $\theta_{j} \sim \pi_{j}$ for $j=1, \ldots, k$ are independent (a priori assumption).

Posterior

As y is the data, the unknown variables are the missing data z and the parameter vectors λ and θ - we include all of them into the posterior!
The posterior density is

$$
\begin{aligned}
\pi(z, \lambda, \theta \mid y) & \propto \pi(y, z \mid \lambda, \theta) \pi(\lambda, \theta)=\pi(y, z \mid \lambda, \theta) \pi(\lambda) \pi(\theta) \\
& \propto\left\{\prod_{i=1}^{n} \prod_{j=1}^{k}\left(\pi_{j}\left(y_{i} \mid \theta_{j}\right) \lambda_{j}\right)^{1\left[z_{i}=j\right]}\right\}\left\{\prod_{j=1}^{k} \lambda_{j}^{\alpha_{j}-1}\right\}\left\{\prod_{j=1}^{k} \pi_{j}\left(\theta_{j}\right)\right\} .
\end{aligned}
$$

Looks complicated but we can easily handle all the full conditions - see next slides.

Full conditional for each z_{i}

For each $i=1, \ldots, n$, setting $z_{-i}=\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)$ we have

$$
\pi\left(z_{i} \mid y, \lambda, \theta, z_{-i}\right) \propto \pi_{z_{i}}\left(y_{i} \mid \theta_{z_{i}}\right) \lambda_{z_{i}}, \quad z_{i} \in\{1, \ldots, k\}
$$

which is a simple distribution to sample from (just use the R-command 'sample').

Full conditional for each θ_{j}

For each $j=1, \ldots, k$, setting $\theta_{-j}=\left(\theta_{1}, \ldots, \theta_{j-1}, \theta_{j+1}, \ldots, \theta_{k}\right)$ we have

$$
\pi\left(\theta_{j} \mid \theta_{-j}, \lambda, y, z\right) \propto \pi_{j}\left(\theta_{j}\right) \prod_{i: z_{i}=j} \pi_{j}\left(y_{i} \mid \theta_{j}\right)
$$

This is equivalent to the posterior density for the case of independent observations from $\pi_{j}\left(\cdot \mid \theta_{j}\right)$ (i.e., when considering only the observations selected from the j th component).
For example, if the mixture component density $\pi_{j}\left(y_{j} \mid \theta_{j}\right)$ is normal, with θ_{j} being the mean and/or the precision parameter(s), and we choose a prior density $\pi_{j}\left(\theta_{j}\right)$ as in earlier lectures, we know how to sample from this full conditional: it is
■ a normal distribution if θ_{j} is the mean parameter $\sim \mathcal{N}$-distribution,

- a gamma distribution if θ_{j} is the precision parameter ~ Gamma-distribution,
- a normal \times gamma distribution if θ_{j} is the mean and precision parameters $\sim \mathcal{N} \times$ Gamma-distribution.

Full conditional for λ

The (joint) full conditional distribution of λ is
$\pi(\lambda \mid \theta, y, z) \propto \prod_{j=1}^{k} \lambda_{j}^{n_{j}(z)+\alpha_{j}-1} \sim \operatorname{Dirichlet}\left(n_{1}(z)+\alpha_{1}, \ldots, n_{k}(z)+\alpha_{k}\right)$, where $n_{j}(z)$ is the number of auxiliary variables z_{i} which are equal to j. So it is easy to simulate from this full conditional.

Conclusion

It is possible to make a fully Bayesian analysis of a mixture model for IID data Y_{1}, \ldots, Y_{n} with unknown mixture weights $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and unknown parameters $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ by considering auxillary variables Z_{1}, \ldots, Z_{k} which are included into the posterior together with (θ, λ). For the posterior simulations we may use a Metropolis within Gibbs sampler, where a sweep consists of updating
$z_{i} \mid \cdots, \quad i=1, \ldots, n, \quad$ (easy: use a Gibbs type update);
$\theta_{j} \mid \cdots, \quad j=1, \ldots, k, \quad$ (easy: Gibbs type update if standard priors are used else make e.g. a random walk Metroplis type update); (easy: use a Gibbs type update).
$\lambda \mid \cdots$

Note that we fixed k - in more advanced work k is also treated as an unknown parameter...
This is now followed by an exercise, considering different cases with known values of k.

