Bayesian statistics, simulation and software

Module 6: The Gibbs sampler

Jesper Møller and Ege Rubak
Department of Mathematical Sciences
Aalborg University

The Gibbs sampler - the general algorithm

Aim: We want to sample $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ from a density $\pi(\boldsymbol{\theta})$, e.g. the prior or the posterior density (in the latter case, suppressing in the notation the dependence of the data $x: \pi(\boldsymbol{\theta})=\pi(\boldsymbol{\theta} \mid x)$).
Assume $\theta_{i} \in \Omega_{i} \subseteq \mathbf{R}^{d_{i}}$ and $\boldsymbol{\theta} \in \Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{k} \subseteq \mathbf{R}^{d_{1}+d_{2}+\cdots+d_{k}}$
We can then generate an approximate sample from $\pi(\boldsymbol{\theta})$ (provided some technical conditions are satisfied) as follows:

Gibbs Sampler

- Choose initial value $\boldsymbol{\theta}^{(0)}=\left(\theta_{1}^{(0)}, \theta_{2}^{(0)}, \ldots, \theta_{k}^{(0)}\right)$.
- For $i=1,2, \ldots, t$

1. Generate $\theta_{1}^{(i)} \sim \pi\left(\theta_{1} \mid \theta_{2}^{(i-1)}, \theta_{3}^{(i-1)}, \ldots, \theta_{k}^{(i-1)}\right)$
2. Generate $\theta_{2}^{(i)} \sim \pi\left(\theta_{2} \mid \theta_{1}^{(i)}, \theta_{3}^{(i-1)}, \ldots, \theta_{k}^{(i-1)}\right)$
k. Generate $\theta_{k}^{(i)} \sim \pi\left(\theta_{k} \mid \theta_{1}^{(i)}, \theta_{2}^{(i)}, \ldots, \theta_{k-1}^{(i)}\right)$

The higher i is the closer $\boldsymbol{\theta}^{(i)}=\left(\theta_{1}^{(i)}, \theta_{2}^{(i)}, \ldots, \theta_{k}^{(i)}\right)$ is to being a sample from $\pi(\boldsymbol{\theta})$.
When d_{1}, \ldots, d_{k} are small, Gibbs sampling may be easy to use.

Example: Marriage rates in Italy

For the years 1936 to 1951 (16 years) the marriage rates per 1000 of the population in Italy have been observed. How do we compare marriage rates that occurred during WW2 to rates just before and after?
Data: $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{16}\right)$.

Italian marriages: Model

Model: Conditional on (true) rates $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{16}$ the observed rates $y_{1}, y_{2}, \ldots, y_{16}$ are independent and $y_{i} \sim \operatorname{Pois}\left(\lambda_{i}\right)$:

- Joint density of data \mathbf{y} :

$$
\pi(\mathbf{y} \mid \boldsymbol{\lambda})=\prod_{i=1}^{16} \pi\left(y_{i} \mid \lambda_{i}\right)=\prod_{i=1}^{16} \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}
$$

Italian marriages: Prior and hyper prior

Prior: Conditional on a hyper parameter $\beta>0$ the rates $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{16}$ are i.i.d. with $\lambda_{i} \mid \beta \sim \operatorname{Exp}(\beta)$:

■ The prior density of $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{16}\right)$ conditional on β is

$$
\pi(\boldsymbol{\lambda} \mid \beta)=\prod_{i=1}^{16} \pi\left(\lambda_{i} \mid \beta\right)=\prod_{i=1}^{16} \beta \exp \left(-\beta \lambda_{i}\right) .
$$

As we are not sure which value the common parameter β should take, we assume a so-called hyper prior on β :
$\square \beta \sim \operatorname{Exp}(1)$, i.e. $\pi(\beta)=e^{-\beta}$ for $\beta>0$.
Thus the prior density for $(\boldsymbol{\lambda}, \beta)$ is

$$
\pi(\boldsymbol{\lambda}, \beta)=\pi(\beta) \pi(\boldsymbol{\lambda} \mid \beta)=e^{-\beta} \prod_{i=1}^{16} \beta \exp \left(-\beta \lambda_{i}\right)
$$

Posterior

Posterior density:

$$
\begin{aligned}
\pi(\boldsymbol{\lambda}, \beta \mid \mathbf{y}) & \propto \pi(\mathbf{y} \mid \boldsymbol{\lambda}, \beta) \pi(\boldsymbol{\lambda}, \beta) \\
& =\left(\prod_{i=1}^{16} \pi\left(y_{i} \mid \lambda_{i}\right)\right)\left(\prod_{i=1}^{16} \pi\left(\lambda_{i} \mid \beta\right)\right) \pi(\beta) \\
& =\left(\prod_{i=1}^{16} \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}\right)\left(\prod_{i=1}^{16} \beta e^{-\beta \lambda_{i}}\right) e^{-\beta}, \quad \lambda_{1}, \ldots, \lambda_{16}, \beta>0 .
\end{aligned}
$$

This looks complicated. Therefore to explore the posterior we make use of a Gibbs sampler with low dimensional distributions - these are called full conditionals and are specified as follows.

Full conditionals

■ Let $\boldsymbol{\lambda}_{-i}=\left(\lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_{16}\right), i=1, \ldots, 16$.

- The full conditional for λ_{i} has density

$$
\begin{aligned}
\pi\left(\lambda_{i} \mid \boldsymbol{\lambda}_{-i}, \mathbf{y}, \beta\right) & =\frac{\pi\left(\lambda_{i}, \boldsymbol{\lambda}_{-i}, \mathbf{y}, \beta\right)}{\pi\left(\boldsymbol{\lambda}_{-i}, \mathbf{y}, \beta\right)} \\
& \propto\left(\prod_{j=1}^{16} \pi\left(y_{j} \mid \lambda_{j}\right)\right)\left(\prod_{j=1}^{16} \pi\left(\lambda_{j} \mid \beta\right)\right) \pi(\beta) \\
& \propto \pi\left(y_{i} \mid \lambda_{i}\right) \pi\left(\lambda_{i} \mid \beta\right) \\
& =\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!} \cdot \beta e^{-\beta \lambda_{i}} \\
& \propto e^{-\lambda_{i}(1+\beta)} \lambda_{i}^{y_{i}+1-1} \\
& \sim \operatorname{Gamma}\left(y_{i}+1,(1+\beta)^{-1}\right)
\end{aligned}
$$

Full conditionals - β

- The full conditional for β has density

$$
\begin{aligned}
\pi(\beta \mid \boldsymbol{\lambda}, \mathbf{y}) & \propto\left(\prod_{i=1}^{16} \pi\left(y_{i} \mid \lambda_{i}\right)\right)\left(\prod_{i=1}^{16} \pi\left(\lambda_{i} \mid \beta\right)\right) \pi(\beta) \\
& \propto\left(\prod_{i=1}^{16} \pi\left(\lambda_{i} \mid \beta\right)\right) \pi(\beta) \\
& =\left(\prod_{i=1}^{16} \beta e^{-\beta \lambda_{i}}\right) e^{-\beta} \\
& \propto \beta^{16+1-1} e^{-\beta\left(1+\sum_{i=1}^{16} \lambda_{i}\right)} \\
& \sim \operatorname{Gamma}\left(17,\left(1+\sum_{i=1}^{n} \lambda_{i}\right)^{-1}\right)
\end{aligned}
$$

Posterior marriage rates: Boxplots

Although there is a clear trend of a drop during WW2 it is not extreme:

Posterior distribution of β

Note that β^{-1} is the prior mean of a marriage rate.

Example: Airport mishandling of luggage

Every hour the number of mishandled bags have been recorded:

Notation:

■ Let $y_{t} \in \mathbb{N}_{0}$ denote the number of mishandled bags at time (hour) t.

- The aiport is in (so to say) one of two states: Normal or broken. Let $x_{t} \in\{1,2\}$ denote the state of the airport at time t ($1=$ normal, $2=$ broken).

Objective:

- Estimate the state of the airport at each hour.

Mishandling: Data model

- Conditional on $\mathbf{x}=\left(x_{1}, \ldots, x_{100}\right)$ the number of mishandlings are independent, and the conditional distribution of $y_{t} \mid \mathbf{x}$ depends only on x_{t}.
- The number of mishandlings is assumed to follow a Poisson distribution:
- $y_{t} \mid x_{t}=1 \sim \operatorname{Pois}(10) \quad$ Normal state
- $y_{t} \mid x_{t}=2 \sim \operatorname{Pois}(15) \quad$ Broken state

Maximum likelihood estimate (most likely state according to data model): $x_{t}=1$ is most likely

$$
\Leftrightarrow \quad \frac{e^{-10} 10^{y_{t}}}{y_{t}!}>\frac{e^{-15} 15^{y_{t}}}{y_{t}!} \quad \Leftrightarrow \quad y_{t}>\frac{5}{\ln 15-\ln 10}
$$

Mishandling: Prior

It is known that the airport tends to "stick" in the same state. Thus the prior for \mathbf{x} is assumed to be a Markov chain:

- $P\left(x_{1}=1\right)=P\left(x_{1}=2\right)=\frac{1}{2} \quad$ (probalities for initial state)
- $P\left(x_{t+1}=x_{t} \mid x_{t}\right)=0.9 \quad$ (probablity of staying)

■ $P\left(x_{t+1} \neq x_{t} \mid x_{t}\right)=0.1 \quad$ (probablity of switching)

Example of a realisation from the prior:

Mishandling: Posterior

The posterior density is

$$
\begin{aligned}
\pi(\mathbf{x} \mid \mathbf{y}) & \propto \pi(\mathbf{y} \mid \mathbf{x}) \pi(\mathbf{x}) \\
& =\left(\prod_{t=1}^{100} \pi\left(y_{t} \mid x_{t}\right)\right)\left(\pi\left(x_{1}\right) \prod_{t=1}^{99} \pi\left(x_{t+1} \mid x_{t}\right)\right)
\end{aligned}
$$

Thus we obtain a full conditional for each x_{t} :

$$
\pi\left(x_{t} \mid y_{t}, \mathbf{x}_{-t}\right) \propto \pi\left(y_{t} \mid x_{t}\right) \pi\left(x_{t+1} \mid x_{t}\right) \pi\left(x_{t} \mid x_{t-1}\right)
$$

for $1<t<99$ with obvious modifications for $t=1$ and $t=100$.
So $x_{t} \mid y_{t}, \mathbf{x}_{-t}$ is a 1-2 random variable with probabilities

$$
\pi\left(x_{t}=i \mid y_{t}, \mathbf{x}_{-t}\right)=\frac{\pi\left(y_{t} \mid x_{t}=i\right) \pi\left(x_{t+1} \mid x_{t}=i\right) \pi\left(x_{t}=i \mid x_{t-1}\right)}{\sum_{j=1}^{2} \pi\left(y_{t} \mid x_{t}=j\right) \pi\left(x_{t+1} \mid x_{t}=j\right) \pi\left(x_{t}=j \mid x_{t-1}\right)}
$$

for $i=1,2$. It is of course easy to simulate from this distribution.

Posterior results

Example: Plot of x_{30} during $I=250$ "sweeps" of the Gibbs sampler

Estimate of the posterior probability that $x_{30}=1$:

$$
P\left(x_{30}=1 \mid \mathbf{y}\right) \approx \frac{1}{I} \sum_{i=1}^{I} 1\left[x_{30, i}=1\right]=57.2 \%
$$

For all hours: Plot of posterior probabilities $P\left(x_{t}=1 \mid \mathbf{y}\right), t=1, \ldots, 100$.

Comparison

Most likely state according to the posterior distribution

Compare this to the MLE (the most likely state using only the data model):

