Exercises for module 6

The Gibbs sampler

1 IQ test

Suppose that n people have taken an IQ-test. The score x_{i} obtained by the i th person is assumed to be normally distributed with known precision τ and a mean μ_{i} which corresponds to the true IQ for that person, i.e. $x_{i} \sim N\left(\mu_{i}, \tau\right)$. Assume that the people taking the test come from a population where the true IQ can be assumed to be normally distributed, i.e. $\mu_{i} \sim N\left(\mu_{G}, \tau_{G}\right)$. Regarding priors we assume a priori that μ_{G} and τ_{G} are independent, and $\mu_{G} \sim N\left(\mu_{0}, \tau_{0}\right)$ and $\tau_{G} \sim \operatorname{Gamma}(\alpha, \beta)$.

1. Determine the joint distribution $\pi\left(x_{1}, \ldots, x_{n}, \mu_{1}, \ldots, \mu_{n}, \mu_{G}, \tau_{G}\right)$.
2. Determine the full conditionals, $\pi\left(\mu_{1} \mid \mu_{2}, \ldots, \mu_{n}, \mu_{G}, \tau_{G}, x_{1}, \ldots, x_{n}\right)$ etc. Hint: Have a look at the results for the case of n independent samples x_{1}, \ldots, x_{n} from the same normal distributon $N(\mu, \tau)$.
3. Specify a Gibbs sampler for sampling $\pi\left(\mu_{1}, \ldots, \mu_{n}, \mu_{G}, \tau_{G} \mid x_{1}, \ldots, x_{n}\right)$.

2 Radiocarbon dating

Following Lee (2003, p. 263) consider the following example for archeology: Assume that for each of three samples we have measured the date as x_{1}, x_{2} and x_{3} and a reasonable approximation is $x_{i} \sim N\left(\mu_{i}, \tau_{i}\right)$, where μ_{i} is the true age and τ_{i} is known. It is further known that the age of the samples are positive and below some upper limit k. In addition the time order of the three samples is known, that is $\mu_{1}<\mu_{2}<\mu_{3}$. Thus, as a joint prior on ($\mu_{1}, \mu_{2}, \mu_{3}$) we propose

$$
\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right) \propto \begin{cases}c & \text { if } 0<\mu_{1}<\mu_{2}<\mu_{3}<k \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

where c is a positive constant.

1. Determine the joint posterior pdf for the three mean values, i.e. $\pi\left(\mu_{1}, \mu_{2}, \mu_{3} \mid x_{1}, x_{2}, x_{3}\right)$.
2. Determine the full conditionals, i.e. $\pi\left(\mu_{1} \mid \mu_{2}, \mu_{3}, x_{1}, x_{2}, x_{3}\right)$ etc. Notice: These distributions are non-standard.
3. Specify a Gibbs sampler for sampling of the posterior. How would you generate samples from the non-standard distributions above?
