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Aim: We want to sample 8 = (61,02, ...,0;) from a density 7(6), e.g.
the prior or the posterior density (in the latter case, suppressing in the
notation the dependence of the data z: w(0) = 7(0|z)).

Assume 0; € Q; C R% and 0 € D Xy x--x O C Rdtdattdi
We can then generate an approximate sample from 7(0) (provided some
technical conditions are satisfied) as follows:

m Choose initial value 80 = (9§0),950), ... ,9,(60)).
m Fori=1,2,...,t
1. Generate 95” ~ 7r(01|6?¥_1)7 Qgi_l), e 9,(:_1))
2. Generate 9§i) ~ 7r(92|9§i), 9§i71), ce 9;:7”)

k. Generate 6\ ~ (6]6%",65",...,6%" )
The higher i is the closer () = (9@, Géi), . ,9,(;)) is to being a sample
from m(0).
When dy.....d; are small, Gibbs sampling may be easy to use.
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For the years 1936 to 1951 (16 years) the marriage rates per 1000 of the
population in Italy have been observed. How do we compare marriage
rates that occurred during WW?2 to rates just before and after?

Data: y = (y1,%2,---,%16)-
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Model: Conditional on (true) rates A1, Az, ..., A1 the observed rates
Y1,Y2,---, Y16 are independent and y; ~ Pois(\;):

m Joint density of data y:

16

—/\ )\yL
m(ylA) = HW (il A:) H ui!
i=1 v
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Prior: Conditional on a hyper parameter 5 > 0 the rates A1, A2, ..., Aig
are i.i.d. with \;|8 ~ Exzp(5):

B The prior density of A = (\1,..., A1) conditional on 3 is

16
w(AlB) = Hmw [T Bexp(=5M).

i=1

As we are not sure which value the common parameter 3 should take, we
assume a so-called hyper prior on f3:

m 3~ Exp(l),ie n(B) =e P for B> 0.
Thus the prior density for (X, 3) is

16
7(A, B) = m(B)m(A|B) = e P [ Bexp(=BN).

=1
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Posterior density:

m(A, Bly) o< w(y |, B)w(X, B)

(Hﬂwi))( "\ m) ~(3)

16 7)\)\y1 16
<H ><Hﬂ ﬁA) Aly..., A6, 8> 0.

i=1

This looks complicated. Therefore to explore the posterior we make use
of a Gibbs sampler with low dimensional distributions — these are called
full conditionals and are specified as follows.
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m Let A—i = ()\1,...,)\i_1,)\i+1,...,Alﬁ), 1=1,...,16.
m The full conditional for A; has density

7T()‘ia )‘72’73’76)
ﬂ-()‘—iaY7ﬂ)

16 16
Hﬁ(yﬂ)\j) Hﬂ()xj\ﬂ) m(B)

W(Ai|A7i7Y7B) =

o mlgi AT OB)

_ —)\ )\yl 5 e
Yi!

o e~ N (1+ﬂ))\1i41‘+171

~ Gamma(y; +1,(1+B)™Y),
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m The full conditional for 8 has density

6
(BN, y) (Hw yil A ) (Hmw)) ©(8)
i=1

(H w(W)) m(8)
11:61

(H 56—5M> B
=1

16 .
oc BLOH1-1e=BAU+E521 M)

K

- Gamma(lz (1+ En: Ai)‘l)-

=1
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Although there is a clear trend of a drop during WW?2 it is not extreme:
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Note that 37! is the prior mean of a marriage rate.
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Every hour the number of mishandled bags have been recorded:
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Notation:
B Let y; € Ny denote the number of mishandled bags at time (hour) ¢.

B The aiport is in (so to say) one of two states: Normal or broken.
Let ; € {1,2} denote the state of the airport at time ¢ (1=normal,
2=broken).

Objective:
m Estimate the state of the airport at each hour.
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m Conditional on x = (x1,...,2100) the number of mishandlings are
independent, and the conditional distribution of y;|x depends only
on I¢.

m The number of mishandlings is assumed to follow a Poisson
distribution:

> yi|lze =1 ~ Pois(10) Normal state
> yi|lzy = 2 ~ Pois(15) Broken state

Maximum likelihood estimate (most likely state according to data
model): z; = 1 is most likely
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It is known that the airport tends to “stick” in the same state. Thus the
prior for x is assumed to be a Markov chain:

B Pri=1)=Plx,=2)=3 (probalities for initial state)
B P(xi1 = x¢lay) = 0.9 (probablity of staying)
B Pz # x¢lae) = 0.1 (probablity of switching)

Example of a realisation from the prior:
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The posterior density is

m(x|y) o< 7 (y[x)7(x)

100 99
= (H 7T(th|$t)> (W(xl) H T(Te41 xt))

t=1
Thus we obtain a full conditional for each x;:
m(@e|ye, X—¢) o T(ye|we) (T 1| T) (20 |T1-1).

for 1 < t < 99 with obvious modifications for t = 1 and ¢ = 100.

So x¢|yt, x—¢ is a 1-2 random variable with probabilities

(e = iy, X_s) = 27r(yt|xt = i)m(xeq1|ze = ) (xy = P]Te—1)

> i1 Tyl = J)m (@il = J)m(@e = jlae—1)
for i = 1,2. It is of course easy to simulate from this distribution.
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Example: Plot of x3g during I = 250 “sweeps” of the Gibbs sampler
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Estimate of the posterior probability that x39 = 1:
1 J
P(x30 = l]y) = YZ: [230,; = 1] = 57.2%.

For all hours: Plot of posterior probabilities P(z; = 1|y), t =1,...,100.
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Most likely state according to the posterior distribution

Sttt
ovhroO®C

Compare this to the MLE (the most likely state using only the data

model):
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