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Module 10: Bayesian prediction and model checking
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Prior predictions

Suppose we want to predict future data x̃ without observing any data x.

Assume:

� Data model: x̃|θ ∼ x|θ ∼ π(x|θ).

� Prior: π(θ).

This implies a joint distribution:

(x̃, θ) ∼ π(x, θ) = π(x|θ)π(θ).

From this joint distribution we obtain the marginal density of x̃,

x̃ ∼ π(x) =

∫

π(x|θ)π(θ)dθ,

which is called the prior predictive density.
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Prior prediction: Normal case, τ known

Assume:

� Data model: π(x|µ) ∼ N (µ, τ).

� Prior: π(µ) ∼ N (µ0, τ0).

Prior predictive density:

π(x) =

∫

π(x|µ)π(µ)dµ

=

∫

√

τ

2π
exp
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2
τ(x− µ)2

)
√
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exp
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dµ

and a simple calculation shows

π(x) ∝ exp

(

−
1

2

ττ0
τ + τ0

(x− µ0)
2

)

∼ N

(

µ0,
ττ0

τ + τ0

)

.

Easier argument: x− µ ∼ N (0, τ) is independent of µ ∼ N (µ0, τ0), so

x ∼ N
(

µ0, (
1
τ
+ 1

τ0
)−1

)

= N
(

µ0,
ττ0
τ+τ0

)

.

NB: prior predictive var. is larger than both prior var. and data var.
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Prior predictive distribution

Illustration of the fact that prior predictive precision < prior precision
(ignore the dashed line):
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Simulating the prior predictive distribution

If the prior predictive density π(x) is difficult to derive we can simply
make a simulation x̃ in two steps:

1. Generate parameter from prior: θ ∼ π(θ).

2. Conditional on θ generate x̃: x̃ ∼ π(x|θ).
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Posterior prediction

Now, suppose we have observed data x and want to predict a possible
future observation x̃ given data x.

Assume:

� Data model: x̃|θ ∼ x|θ ∼ π(x|θ), and given θ then x and x̃ are
independent.

� Prior: π(θ).

The joint density of predicted data x̃, data x and parameter θ is

π(x̃, x, θ) = π(x̃, x | θ)π(θ) = π(x̃|θ)π(x|θ)π(θ)

= π(x̃|θ)π(θ|x)π(x)

where π(x̃|θ) and π(x|θ) represent the same conditional distribution
(namely that from the data model).

The posterior predictive distribution is the (marginal) distribution of x̃
conditional on data x:

π(x̃|x) =

∫

π(x̃, θ|x)dθ =

∫

π(x̃, θ, x)

π(x)
dθ =

∫

π(x̃|θ)π(θ|x)dθ.

Thus we have now replaced the prior density with the posterior density.
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Simulating the posterior predictive distribution

If the posterior predictive density π(x̃|x) is difficult to derive we can
simply make a simulation x̃ in two steps:

1. Generate parameter from posterior: θ|x ∼ π(θ|x).

2. Conditional on θ generate x̃ from data model: x̃ ∼ π(x|θ).
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Posterior prediction: Normal case, τ known

Data model: X1, X2, . . . , Xn
iid
∼ N (µ, τ).

Prior: π(µ) ∼ N (µ0, τ0).

Posterior: π(µ|x) ∼ N (µ1, τ1), µ1 = nτx̄+τ0µ0

nτ+τ0
and τ1 = nτ + τ0.

As the prior predictive distribution (of one observation) is N
(

µ0,
τ0τ
τ+τ0

)

and the posterior is the “prior” for the posterior prediction, we obtain by
replacing µ0 by µ1 and replacing τ0 by τ1 that

x̃|x ∼ N

(

µ1,
ττ1

τ + τ1

)

= N

(

nτx̄+ τ0µ0

nτ + τ0
,
(nτ + τ0)τ

τ + nτ + τ0

)

.

NB: Posterior predictive mean and posterior mean are equal but posterior
predictive precision ττ1

τ+τ1
is smaller than posterior precision τ1 and smaller

than prior precision τ . When n is large, we have x̃|x
approx
∼ N (x̄, τ).

When τ0 = 0 (i.e. we consider an improper prior), we have (as in classical

statistics) µ|x ∼ N (x̄, nτ) and x̃|x
approx
∼ N (x̄, τ) (for n large).
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Prior and posterior predictive distributions
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Model checking

Idea: If the model is correct, then posterior predictions of the data
should look like the observed data. Difficulty: How to choose a good
measure of “similarity”?

Example: We have observed a sequence of n = 20 zeros and ones:

1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

Model: X1, X2, . . . , X20 are IID where P (Xi = 1) = p is unknown.

Prior: π(p) ∼ Be(α, β) where α > 0 and β > 0 are known.

Posterior: π(p|x) ∼ Be(#ones + α,#zeros + β).

Model checking: We simulate N posterior predictive realisations

X̃
(i) = (X̃

(i)
1 , X̃

(i)
2 , . . . , X̃

(i)
20 ) i = 1, . . . , N.

If these vectors look “similar” to the data above, it would indicate that
the model is probably okay.
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Model checking: First attempt (a failure)

Define summary function

s(x) = #ones in x.

Histogram for s(x̃(i)) for N = 10, 000 independent posterior predictions:

Histogram of proportion of ones
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So the observed number of ones is in no way unusual compared to the
posterior predictions.

This is just as expected — so we need another summary function s(x).
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Model checking: Second attempt (a success)

Define summary function

s(x) = number of switches between ones and zeros in x.

In the data the number of switches is 3:

1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

Histogram for s(x̃(i)) for N = 10, 000 independent posterior predictions:

Histogram of number of switches
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Only around 1.7% of the posterior prediction have 3 or fewer switches.

This suggests that the model assumption of independence is questionable.
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Example: Speed of light

66 measurements of the time it takes light to travel 7445 meters
(deviations in nanoseconds from a given number):

24.76 24.78 24.80 24.82 24.84
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0

Data model:
x1, . . . , x66

iid
∼ N (µ, τ).

(Questionable?)

Prior:
π(µ, τ) ∼ N (0, 0.001)× Gamma(0.001, 1000).
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Example: Speed of light

Posterior distribution of µ, τ and 1/τ :
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Red lines denote sample mean and sample variance, respectively.
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Example: Speed of light

Data contain one very low measurement. Is this unusual?

Generate 1000 posterior predictive samples x(i) = (x
(i)
1 , . . . , x

(i)
66 ),

i = 1, . . . , 1000, and define

s(x) = min{x1, . . . x66}.

24.76 24.78 24.80 24.82 24.84 24.86 24.88
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Conclusion: The smallest value in the data is very unlikely under the
assumed model.
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