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Bayesian Statistics, Simulations and Software

Course outline

� Course consists of 12 half-days – modules of only 3 hours and 15
minutes each – of lectures and practicals. Expect you work hard on
your own – otherwise it may be hard to pass! Solutions to (perhaps
all) exercises are available, but use them modestly.

� To pass: Active participation in at least 10 of 12 modules plus a
satisfactory solution of the exercise considered at the last module
(where you will be informed about the details to whom and when
the solution should be send).

Today

� 1. module: Probability brush-up.

� 2. module: Introduction to R software.
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Probability brush-up

Setup: Perform an ”experiment”.

State space Ω = the set of all possible outcomes of the experiment.

Event: A ⊆ Ω — subset of the state space.

Example: Trip to the casino – what is the relevant state space?

Depends on the types of events...

Examples of events:

� At least three wins on ”even”out of five trials: Ω =?? (Yes,
Ω = {even, not even}5.)

� Temperature inside the casino at noon ∈ [25, 26]. (Maybe
Ω = [18, 30] (degrees in C).)
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Probability

Notation: Probability of an event A is denoted P (A). Basic properties:

� 0 ≤ P (A) ≤ 1.

� P (Ω) = 1.

� If A1, A2, . . . are pairwise disjoint events (Ai ∩Aj = ∅ for i 6= j),
then

P

(

∞
⋃

n=1

An

)

=

∞
∑

n=1

P (An).

Consequences:

� AC denotes A’s complement, i.e. A ∩AC = ∅ and Ω = A ∪AC . So
P (A) + P (AC) = P (A ∪AC) = 1 and hence

P (AC) = 1− P (A).

� For any events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B).
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Example: A fair coin is tossed 10 times. What is the probability of any
outcome?

Answer: 2−10 since all 210 possible outcomes are equally likely.

What is the probability of at least one head?

Answer: 1− P (all tail) = 1− 2−10.

What is the probability of at least one head and at least one tail?

Answer: P (at least one head) + P (at least one tail)]−
P (at least one head or at least one tail) = 2[1− 2−10]− 1 = 1− 2−9.

Note that Ω = {head, tail}10 but we didn’t explicitly state that... often
we just do probability calculations without stating the state space.
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Law of total probability

Breaks a probability into a sum of probabilities...: For any events A and
B,

P (A) = P (B ∩A) + P (BC ∩A).

Extension: Split Ω into pairwise disjoint sets

B1, B2, . . . ,

that is Bi ∩Bj = ∅ for i 6= j, and Ω = ∪∞
i=1Bi. Consider event

A = (B1 ∩A) ∪ (B2 ∩A) ∪ · · · =
∞
⋃

n=1

(Bn ∩A).

Then (Bi ∩A) ∩ (Bj ∩A) = ∅ for i 6= j, so

P (A) =

∞
∑

n=1

P (Bn ∩A).
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Conditional probability

For events A,B ⊆ Ω with P (B) > 0, the conditional probability of A
given B is

P (A|B) =
P (A ∩B)

P (B)
.

Can be rewritten as

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A)

and so we obtain...
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Bayes’ Theorem

Bayes’ theorem

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B)
.

Notice that we have “reversed” the conditioning.

Since

P (B) = P (A ∩B) + P (AC ∩B)

= P (A)P (B|A) + P (AC)P (B|AC)

we can reformulate Bayes’ theorem as

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|AC)P (AC)
.
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Example: Test for a rare disease

Events: I=infected IC=uninfected

Z=positive test ZC=negative test

Known:

� P (I) = 0.1%

� P (Z|I) = 92% (true positive)

� P (Z|IC) = 4% (false positive)

Question:

� Given a positive test, what is the probability of having the disease?

It is P (I|Z) ≈ 2.5% (which is far from P (Z|I)) because

P (I|Z) =
P (Z|I)P (I)

P (Z|I)P (I) + P (Z|IC)P (IC)
=

0.92× 0.001

0.92× 0.001 + 0.04× (1− 0.001)
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Independence

Two events A and B are independent if and only if

P (A ∩B) = P (A)P (B).

Consequences:

� P (A|B) = P (A∩B)
P (B) = P (A)P (B)

P (B) = P (A) provided P (B) > 0.

� P (B|A) = P (B) provided P (A) > 0.

� A and BC are independent.

� AC and B are independent.

� AC and BC are independent.
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Example:
Events: I=infected IC=uninfected

Z=positive test ZC=negative test

Known probabilities:

� P (I) = p ∈ (0, 1)

� P (Z|I) = q (true positive)

� P (Z|IC) = r (false positive)

Fact: Z and I are independent if and and only if P (Z) = q = r. However,
as we want q to be much larger than r, there will be dependence.
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Random variable

Definition: A random variable (RV) is a function X from the state
space Ω to the real numbers R (i.e. X : Ω 7→ R).

Definition: Its distribution function

F (x) = P (X ≤ x), x ∈ R,

is a non-decreasing function with limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.
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Discrete random variable

Definition: A discrete RV takes countably many values and has a
probability density function (pdf) π(x):

� π(x) = P (X = x) ≥ 0 for x ∈ R (or just x ∈ X(Ω)),

�

∑

x π(x) = 1 (where
∑

x . . . means
∑

x∈X(Ω) . . .).

Then
F (x) =

∑

y≤x

π(y)

(where
∑

y≤x . . . means
∑

y∈X(Ω): y≤x . . .) is a step function.
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Example: Binomial distribution

A discrete RV X follows a binomial distribution with parameters p and
n (0 ≤ p ≤ 1 and n ∈ {1, 2, 3, . . .}) if

π(x) =

(

n

x

)

px(1− p)n−x, x ∈ {0, 1, 2, . . . , n},

where
(

n

x

)

=
n!

x!(n− x)!
, n! = 1 · 2 · 3 · · ·n.

Notation: X ∼ B(n, p).
Interpretation:

� Perform n independent experiments, each with outcomes “success”
or “failure”.

� P (“success”) = p for all experiments.

� Let X = number of successes.

� Then X ∼ B(n, p).
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Expectation and variance of RV

Definition: The expectation (or mean value) of a discrete RV is
µ = E[X] =

∑

x xπ(x).

Properties:

� E[h(X)] =
∑

x h(x)π(x) for functions h.

� E[a+ bX] = a+ bE[X] for numbers a and b.

Definition: The variance of a discrete RV is

σ2 = V ar[X] = E[(X − µ)2]

=
∑

x

(x− µ)2π(x) = E[X2]− (E[X])2.

Property: V ar(a+ bX) = b2V ar(X) for numbers a and b.

Example: Assume X ∼ B(n, p):

� E[X] = np.

� V ar(X) = np(1− p).
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Continuous random variable

A RV X with a continuous distribution function is called a continuous
RV – this implies P (X = x) = 0 for all x ∈ R. It is usually specified by a
probability density function (pdf) π, that is,

π(x) ≥ 0 and F (x) =

∫ x

−∞

π(y)dy for all x ∈ R.

Thus π = F ′ and

� P (a ≤ X ≤ b) =
∫ b

a
π(x)dx for all numbers a ≤ b.

Expected value of continuous RV:
� E[X] =

∫∞

−∞
xπ(x)dx.

� E[h(X)] =
∫∞

−∞
h(x)π(x)dx.

Variance of continuous RV:
� σ2 = V ar(X) = E[(X − µ)2] =

∫

(x− µ)2π(x)dx = E[X2]− µ2.
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Remarks

For simplicity we call both a pmf and a pdf for a density (it will always be
clear whether we consider the density of a discrete or a continuous RV).

Important special case: a probability can be expressed as an
expectation. For example, if −∞ ≤ a ≤ b ≤ ∞,

E[1(a ≤ X ≤ b)] = P (a ≤ X ≤ b)

where 1(·) is the indicator function.
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Example: Normal distribution

A RV X follows a normal distribution with mean µ and precision τ if
it has density/pdf

π(x) =

√

τ

2π
exp

(

−
τ(x− µ)2

2

)

, x ∈ R.

Notation: X ∼ N (µ, τ).

Note: X is a continuous RV, µ ∈ R, and τ = 1
Var(X) > 0.
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Two (or more) continuous RVs

Let X and Y be continuous RVs with joint pdf/density

π(x, y) ≥ 0

meaning that P ((X,Y ) ∈ A) =
∫

A
π(x, y)dxdy for any A ⊆ R

2.

Let πX(x) and πY (y) be the (marginal) densities for X and Y ,
respectively; e.g.

πX(x) =

∫ ∞

−∞

π(x, y)dy.

We have

Eh(X,Y ) =

∫ ∫

h(x, y)π(x, y)dxdy

for any real function h (provided the mean exists). For any real numbers
a and b,

E[aX + bY ] = aEX + bEY.

Covariance:
Cov(X,Y ) = E[(X − EX)(Y − EY )] = E(XY )− EXEY .
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Conditional densities and independence of continuous RVs

The conditional pdf/density is

πY |X(y|x) =
π(x, y)

πX(x)
if πX(x) > 0.

Definition: X and Y are independent if and only if

π(x, y) = πX(x)πY (y), x, y ∈ R,

or equivalently

πY |X(y|x) = πY (y) whenever πX(x) > 0.

Independence implies

Cov(X,Y ) = 0, V ar(X + Y ) = V arX + V arY.
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Example: Independent normals

Assume X1, X2, . . . , Xn
iid
∼ N (µ, τ) (iid = independent and identically

distributed). Then the joint pdf/density is

π(x1, x2, . . . , xn) =

n
∏

i=1

√

τ

2π
exp

(

−
1

2
τ(xi − µ)2

)

=
( τ

2π

)
n

2

exp

(

−
1

2
τ

n
∑

i=1

(xi − µ)2

)

.
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Similar exposition if we consider independent discrete RVs...

Or when considering discrete and continuous RVs together...
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