
Module 10: Solutions
Exercise 1: Mining Disasters

This examples is concerned with mining disasters in British mines from 1851 and 26,500 days forward, where
the time for 109 accidents is measured in days since 1851. Read in the data set mining.dat in R:

data_url <- "https://asta.math.aau.dk/course/bayes/2018/?file=mining.dat"
mining <- read.table(data_url)
mining <- mining[,1]

We model the data as a Poisson process with intensity function α(t), t ∈ [0, 26500]. This means that the
number of disasters in an interval [t1, t2] is Poisson distributed with parameter

∫ t2
t1
α(t)dt. If ti denotes the

time of the ith disaster, then the log likelihood is given by

109∑
i=1

log(α(ti))−
∫ 26500

0
α(t)dt.

During the period which the data covers, a law was introduced which greatly improved the safety in mines.
This leads us to assume that α takes one value before this law was introduced and another after: Let j denote
the time (measured in days since 1851) at which the change takes place – we call j for a change point –
then we assume that α(t) = a if t < j and α(t) = a + d if t ≥ j, where 0 < a + d ≤ a. If the times of the
disasters are in a vector mining, you can define a log likelihood function in R as

llik <- function(j, a, d){
## BEWARE: We refer to the global variable mining here!
sum(log(a+(mining>j)*d))- (j*a + (26500-j)*(a+d))

}

Assume for j a uniform prior on the interval [0, 26500], whilst that a = 0.007 and d = −0.004 are known.
Then construct a Metropolis-Hastings algorithm which generates a sample from the posterior distribution of
j.

library(coda)
lposterior <- function(j, a = 0.007, d = -0.004){

if(j<0 | j>26500){
return(-Inf)

}
llik(j, a, d)

}
myMH2 <- function(N, sigma = 1, a=0.007, d=-0.004, j0 = 5000){

j <- rep(0, N) # Empty Markov chain
j[1] <- j0 ## initial value
for(i in 2:N){

j_new <- sample(seq(j[i-1]-sigma, j[i-1]+sigma)[-(sigma+1)], size = 1)
logH <- lposterior(j_new, a, d) - lposterior(j[i-1], a, d)
if(log(runif(1))<logH){

j[i] <- j_new
}else{

j[i] <- j[i-1]
}
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}
# Finally return the results
return(mcmc(j))

}
# Try it out:
chain <- myMH2(50000, sigma = 4000)
chain <- window(chain, start = 1000, thin = 100)
summary(chain)

##
## Iterations = 1000:50000
## Thinning interval = 100
## Number of chains = 1
## Sample size per chain = 491
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## 6098.68 905.09 40.85 40.85
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## 4210 5431 6063 6885 7512

plot(chain)
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acf(chain)
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Discuss how to impose a prior on a and d and extend your code to this case of doing posterior simulations.

Exercise 2: Speed of light

In this exercise you are asked to reproduce the model checking results for the speed of light example in the
lecture. The 66 measurements of time can be found in the data file newcomb.csv:

data_url <- "https://asta.math.aau.dk/course/bayes/2018/?file=newcomb.csv"
newcomb <- read.csv(data_url)

That is you have to:

1. Implement a Gibbs sampler to sample from the posterior distribution (Hint: You have implemented a
similar sampler in a previous exercise.)

2. Run the sampler for a sufficient amount of time and show histograms of the parameters.
3. Generate samples from the predictive distribution, calculate the minimum for each sample and show a

histogram of the minimums compared to the data minimum.

Prior parameters

mu0 <- 0
tau0 <- 0.001
alpha <- 0.001
beta <- 1000

Gibbs sampler
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set.seed(1234)
n <- nrow(newcomb)
times <- 1000
mu <- tau <- rep(0, times)
mu[1] <- mean(newcomb$time)
tau[1] <- 1/var(newcomb$time)
for(i in 2:times){

cond_mean <- (n*tau[i-1]*mean(newcomb$time)+tau0*mu0)/(n*tau[i-1]+tau0)
cond_tau <- n*tau[i-1]+tau0
mu[i] <- rnorm(1, cond_mean, 1/sqrt(cond_tau))
cond_shape <- n/2+alpha
cond_scale <- 1/(0.5*sum((newcomb$time-mu[i])^2)+1/beta)
tau[i] <- rgamma(1, shape = cond_shape, scale = cond_scale)

}

Posterior distribution

par(mfrow=c(1,3), mar=c(2,2,0,1))
hist(mu, main="")
abline(v=mean(newcomb$time), lwd=3, col="red")
hist(tau,main="")
hist(1/tau,main="")
abline(v=var(newcomb$time), lwd=3, col="red")
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x <- matrix(0, n, times)
for(i in 1:times){

x[,i] <- rnorm(n, mu[i], 1/sqrt(tau[i]))
}
minimums <- apply(x, 2, min)
hist(minimums, xlim=range(newcomb$time,x), xlab="", ylab="", main="")
abline(v=min(newcomb$time), lwd=3, col="red")
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