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Suppose we want to predict future data Z without observing any data x.

Assume:
m Data model: |0 ~ z|0 ~ 7(x|0).
m Prior: 7(0).

This implies a joint distribution:
(Z,0) ~ 7(xz,0) = w(x|0)m(0).
From this joint distribution we obtain the marginal density of Z,

i ~om(E) = /ﬂ'(x|9)ﬂ'(0)d9,

which is called the prior predictive density.
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Assume:
m Data model:  w(x|u) ~ N (u, 7).

m Prior: m(p) ~ N (po, 10).

Prior predictive density:

w(o) = [ wlal)n(u)d

- / \/;exp (—;T(LE - /L)2) @EXP (—;To(,u - M0)2> dp

and a simple calculation shows

1 779 TTo
m(z) oc exp <_2T + 7o (@= M0)2> ~N <Mo, T+ T0> .

Easier argument: z — u ~ N(0,7) is independent of p ~ N (po, 7o), so
N (o, (2 5) ) = N (o, 75 ).

NB: prior predictive var. is larger than both prior var. and data var.
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Illustration of the fact that prior predictive precision < prior precision
(ignore the dashed line):
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If the prior predictive density () is difficult to derive we can simply
make a simulation Z in two steps:

1. Generate parameter from prior: 0 ~ 7(6).

2. Conditional on 6 generate Z: z ~ m(x]0).
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Now, suppose we have observed data = and want to predict a possible
future observation I given data x.

Assume:
m Data model: |0 ~ x| ~ 7(x|0), and given 0 then x and & are
independent.
m Prior: 7(0).

The joint density of predicted data Z, data = and parameter 6 is
m(Z,2,0) = w(Z, x| 0)m(0) = 7(&|0)m(x|0)n(0)
= (&]0)7(0]x)7 (x)
where 7(Z|0) and 7(z|0) represent the same conditional distribution
(namely that from the data model).

The posterior predictive distribution is the (marginal) distribution of Z
conditional on data x:

w(a?x):/w(i’,ﬂx)d&:/Wd&z/ﬂ(f&)ﬂ(ﬂx)de.

Thus we have now replaced the prior density with the posterior density.
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If the posterior predictive density 7(Z|x) is difficult to derive we can
simply make a simulation  in two steps:

1. Generate parameter from posterior: 0|z ~ 7(0|z).

2. Conditional on @ generate & from data model: Z ~ 7(z|8).
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Data model: X1, Xs,..., X, “ N(u, 7).
Prior: m(u) ~ N (uo, 70)-
Posterior: m(u|x) ~ N (u1,71), p1 = %J;’O“O and 7, =n7 + 79.

As the prior predictive distribution (of one observation) is (uo, T:?;)

and the posterior is the “prior” for the posterior prediction, we obtain by
replacing o by pq and replacing 7y by 71 that

:%|x~]\/<,u1, T ) :N<m'x+70,u0 (nT + 70)T > .

T+ nT+T1 T+nT+7
NB: Posterior predictive mean and posterior mean are equal but posterior
predictive precision % is smaller than posterior precision 71 and smaller
than prior precision 7. When n is large, we have Z|x “"R°° N(z, 7).
When 19 = 0 (i.e. we consider an improper prior), we have (as in classical
statistics) p|z ~ N (Z,n7) and Z|x "R N(Z,7) (for n large).
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Idea: If the model is correct, then posterior predictions of the data
should look like the observed data. Difficulty: How to choose a good
measure of “similarity”?

Example: We have observed a sequence of n = 20 zeros and ones:
11000001111100000000

Model: X1, Xo,..., Xo are [ID where P(X; = 1) = p is unknown.
Prior: 7(p) ~ Be(a, 3) where « > 0 and 8 > 0 are known.
Posterior: m(p|x) ~ Be(#ones + «, #zeros + 3).

Model checking: We simulate N posterior predictive realisations

X0 = (X0, %D XY i=1,... N,

geeey

If these vectors look “similar” to the data above, it would indicate that
the model is probably okay.
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Define summary function

s(x) = Ffones in x.

Histogram for s(x(*)) for N = 10,000 independent posterior predictions:

Histogram of proportion of ones
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So the observed number of ones is in no way unusual compared to the
posterior predictions.

This is just as expected — so we need another summary function s(x).
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Define summary function
s(x) = number of switches between ones and zeros in x.

In the data the number of switches is 3:

11000001111100000000

Histogram for s(i(i)) for N = 10,000 independent posterior predictions:

Histogram of number of switches
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Only around 1.7% of the posterior prediction have 3 or fewer switches.
This suggests that the model assumption of independence is questionable.
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66 measurements of the time it takes light to travel 7445 meters

(deviations in nanoseconds from a given number):

o
<
(=]
(]
o
o
°
o
[ T T T 1
24.76 24.78 24.80 24.82 24.84
Data model:

T1,...,L66 l’gl./\/(/i,T)
(Questionable?)

Prior:
w(u, 7) ~ N(0,0.001) x Gamma(0.001, 1000).
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Posterior distribution of u, 7 and 1/7:
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Red lines denote sample mean and sample variance, respectively.

Bayesian statistics, simulation and software Jesper Mgller and Ege Rubak



Data contain one very low measurement. Is this unusual?

Generate 1000 posterior predictive samples x(*) = (xgi), . ,z&)),
i=1,...,1000, and define

s(x) = min{x1, ... 266}
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Conclusion: The smallest value in the data is very unlikely under the
assumed model.
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