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1 Introduction to stochastic processes

1.1 Data examples
• A special type of data arises when we measure the same variable at different points in time with equal

steps between time points.

• This data type is called a (discrete time) stochastic process or a time series

• One example is the time series of monthly electricity production (GWh) in Australia from Jan. 1958 to
Dec. 1990 :
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CBEdata <- read.table("https://asta.math.aau.dk/eng/static/datasets?file=cbe.dat", header = TRUE)
CBE <- ts(CBEdata[,3])
plot(CBE, ylab="GWh",main="Electricity production")
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• Another example is monthly measurements of the atmospheric CO2 concentration measured at Mauna
Loa 1959 - 1997:

dat<-ts(co2)
plot(co2)
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• Other examples:
– Hourly wind speed measurements
– Daily elspot prices
– An electrical signal measured each millisecond

• Aim: Model, analyse and make predictions for such datasets.

1.2 Stochastic processes
• We denote by Xt the variable at time t. We denote the time points by t = 1, 2, 3, . . . , n.

– We will always assume the data is observed at equidistant points in time (i.e. time steps between
consecutive observations are the same).

• Measurements that are close in time will typically be similar: observations are not statistically
independent!

• Measurements that are far apart in time will typically be less correlated.

2 Important stochastic processes

2.1 Example 1: White noise
• A stochastic process is called a white noise process if the Xt are

– statistically independent
– identically distributed
– have mean 0 and variance σ2

• It is called Gaussian white noise, if

– Xt ∼ norm(0, σ2)
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x = rnorm(1000,0,1)
ts.plot(x, main = "Simulated Gaussian white noise process")
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• White noise processes are the simplest stochastic processes.

• Real data does typically not have complete independence between measurements at different time
points, so white noise is generally not a good model for real data, but it is a building block for more
complicated stochastic processes.

3 Example 2: Random walk
• A random walk is defined by Xt = Xt−1 + Wt, where Wt is white noise.

• Here are 5 simulations of a random walk:
x = matrix(0,1000,5)
for (i in 1:5) x[,i] = cumsum(rnorm(1000,0,1))
ts.plot(x,col=1:5)
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• The random walk may come back to zero after some time, but often it has a tendency to wander of in
some random direction.

4 Example 3: First order autoregressive process
• A first order autoregressive process, AR(1), is defined by Xt = αXt−1 + Wt, where Wt is white

noise and α ∈ R.
– Typically −1 ≤ α ≤ 1
– For α = 0 we get white noise
– For α = 1 we get a random walk

• Simulation of 3 AR(1)-processes with different α values:
w = ts(rnorm(1000))
x1 = filter(w,0.5,method="recursive")
x2 = filter(w,0.9,method="recursive")
x3 = filter(w,0.99,method="recursive")
ts.plot(x1,x2,x3,col=1:3)
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• Next time we will consider autoregressive processes in much more detail and higher order, where they
become quite flexible models for data.

5 Mean, autocovariance and stationarity

5.1 Mean function
• The mean function of a stochastic process is given by

µt = E(Xt)

• A process is called first order stationary if µt = µ.

• Examples:

– The white noise process: µt = 0 by definition.
– The random walk:

µt = E(Xt) = E(Xt−1 + Wt) = E(Xt−1) + E(Wt) = E(Xt−1) = µt−1

So the random walk is first order stationary.
– Similarly,

µt = E(Xt) = E(αXt−1 + Wt) = αE(Xt−1) + E(Wt) = αE(Xt−1) = αµt−1

The AR(1)-model is first order stationary if µ0 = 0 or α = 1, otherwise not.
– The electricity production in Australia did not look first order stationary.

plot(CBE,main="Electricity production")
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Electricity production
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• The mean function shows the mean behavior of the process, but individual simulations may move far
away from this. For example, the random walk has a tendency to move far away from the mean. White
noise on the other hand will stay close to the mean.

5.2 Autocovariance/autocorrelation functions
• The autocovariance function is given by

γ(t, t + h) = Cov(Xt, Xt+h) = E((Xt − µt)(Xt+h − µt+h))

• h is called the lag.
• Note that

γ(t, t) = Var(Xt) = σ2
t

is the variance at time t.
• The autocorrelation function (ACF) is

ρ(t, t + h) = Cor(Xt, Xt+h) = Cov(Xt, Xt+h)
σtσt+h

• It holds that ρ(t, t) = 1, and ρ(t, t + h) is between -1 and 1 for any h.
• The autocorrelation function measures how correlated Xt and Xt+h are related:

– If Xt and Xt+h are independent, then ρ(t, t + h) = 0
– If ρ(t, t + h) is close to one, then Xt and Xt+h tends to be either high or low at the same time.
– If ρ(t, t + h) is close to minus one, then when Xt is high Xt+h tends to be low and vice versa.

5.3 Stationarity
• We call a stochastic process second order stationary if
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– the mean is constant, µt = µ
– the variance σ2

t = Var(Xt, Xt) is constant.
– the autocorralation function only depends on the lag h:

ρ(t, t + h) = ρ(h)

• If a process is second order stationary, then also the autocovariance is stationary γ(t, t + h) = γ(h),
i.e. it is a function of only the lag and is easier to work with and plot.

• Intuitively, stationarity means that the process behaves in the same way no matter which time we look
at.

• There are other kinds of stationarity, but in this course, stationarity will always mean second order
stationarity.

5.4 Stationarity and autocorrelation - example
• Consider an AR(1) process Xt = αXt−1 + Wt. We consider stationarity and autocorrelation for this

process.

– We have already seen that we need µt = 0 to have first order stationarity.

• Now consider the variance. Since Xt = αXt−1 + Wt,

σ2
t = Var(Xt) = Var(αXt−1 + Wt) = Var(αXt−1) + Var(Wt) = α2Var(Xt−1) + Var(Wt) = α2σ2

t−1 + σ2

– (Here we used that Var(X + Y ) = Var(X) + Var(Y ) when X and Y are independent).

• If the variance is constant, then σ2
t = σ2

t−1 and

σ2
t = α2σ2

t + σ2

– We see that the variance can only be constant if −1 < α < 1. In this case σ2
t = σ2

1−α2 .

– For |α| ≥ 1, the variance will increase over time. The process is cannot be stationary (including
random walk).

• To find the autocorrelation, first observe

Xt+h = αXt+h−1 + Wt+h = · · · = αhXt +
h−1∑
i=0

αiWt+h−i

• Then we find the autocovariance:

γ(t, t+h) = Cov(Xt, Xt+h) = Cov(Xt, αhXt+
h−1∑
i=0

αiWt+h−i) = Cov(Xt, αhXt)+Cov(Xt,

h−1∑
i=0

αiWt+h−i) = αhCov(Xt, Xt)+0 = αhVar(Xt)

– (Here we used the computation rules Cov(X, Y + Z) = Cov(X, Y ) + Cov(X, Z) and Cov(X, aY ) =
aCov(X, Y ).)

• If the variance is constant, we can calculate the autocorrelation:

Cov(Xt, Xt+h)
σtσt+h

= αhσ2/(1 − α2)
σ2/(1 − α2) = αh.

• So: the AR(1)-model is stationary if −1 < α < 1 and σ2
t = σ2/(1 − α2) - otherwise not.

• The autocorrelation decays exponentially for a stationary AR(1)-model. This is illustrated for 3 different
α values:
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h = 0:20
acf1 = 0ˆh # AR(1) with alpha = 0 (or white noise)
acf2 = 0.5ˆh # AR(1) with alpha = 0.5
acf3 = 0.9ˆh # AR(1) with alpha = 0.9
plot(matrix(rep(h,3),3),cbind(acf1,acf2,acf3),col=rep(1:3,each=length(h)),

pch=rep(1:3,each = length(h)),xlab="h",ylab="ACF")
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6 Estimation

6.1 Estimation
• The mean and autocovariance/autocorrelation functions are theoretical constructions defined for

stochastic processes, but what about data? Here we have to estimate them.
• We will assume that the process is stationary.
• The (constant) mean can be estimated the usual way:

µ̂ = x̄ = 1
n

n∑
t=1

xt

• The autocovariance function can be estimated as follows (remember it only depends on h, not on t in
the case of stationarity):

γ̂(h) = 1
n

n−h∑
t=1

(xt − x̄)(xt+h − x̄)

• The (constant) variance is estimated as σ̂2 = γ̂(0).
• An estimate of the autocorrelation function is obtained as

ρ̂(h) = γ̂(h)
γ̂(0)
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6.2 The correlogram
• A plot of the sample acf as a function of the lag is called a correlogram.
• To get an idea of how a correlogram looks, we make simulated data from different models and plot the

correlograms below.

White noise:
w = ts(rnorm(100))
par(mfrow=c(1,2))
plot(w)
acf(w)
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• The correlogram is always 1 at lag 0

• For white noise, the true autocorrelation drops to zero.

• The estimated autocorrelation is never exactly zero - hence we get the small bars.

• The blue lines is a 95% confidence band for a test that the true autocorrelation is zero.

• Remember that there is 5% chance of rejecting a true null hypothesis. Thus, 5% of the bars can be
expected to exeed the blue lines.

• AR(1) process with α = 0.9:
w = ts(rnorm(100))
x1 = filter(w,0.9,method="recursive")
par(mfrow=c(1,2))
plot(x1)
acf(x1)
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• The true acf decays exponentially.

7 Non-stationary data

7.1 Check for stationarity
• We will primarily look at stationary processes the next time, but these will not always be good models

for data.

• First we need to check whether the assumption of stationarity is okay.

– One check is visual inspection of a plot of xt vs t to see whether there is any indication of
non-stationarity.

– Another visual check is a plot of the correlogram. If this tends very slowly to zero, this indicates
non-stationarity.

• Note: even though ρ(h) is only well-defined for stationary models, we can plug any data (stationary or
not) into the estimation formula. The estimate may help detecting deviations from stationarity.

7.2 Correlograms for non-stationary data
• Sine curve with added white noise:

w = ts(rnorm(100))
x1 = 5*sin(0.5*(1:100)) + w
par(mfrow=c(1,2))
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plot(x1)
acf(x1)
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• The periodic mean of the process results in a periodic behavior of the correlogram.

• A periodic behavior in the correlogram suggests seasonal behavior in the process.

• Straight line with added white noise:
w = ts(rnorm(100))
x1 = 0.1*(1:100) + w
par(mfrow=c(1,2))
plot(x1)
acf(x1)
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• The linear trend results in a slowly decaying, almost linear correlogram.

• Such a correlogram suggests a trend in the data.

• Data example: Electricity production.
par(mfrow=c(1,2))
plot(CBE)
acf(CBE)
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• There seems to be an increasing trend in the data.

• There is a periodic behavior around the increasing trend.

• It is reasonable to believe that the period is 12 months.

• We have the model
Xt = mt + st + Zt

where

– mt is the (deterministic) trend
– st is a (deterministic) seasonal term (st = st+12)
– Zt is a random (hopefully) stationary part

7.3 Detrending data
• The trend mt in the data can be estimated by a moving average.

• In the case of monthly variation,

m̂t =
1
2 xt−6 + xt−5 + · · · + xt + · · · + xt+5 + 1

2 xt+6

12

• We remove the trend by considering xt − m̂t.

• Next we find the seasonal term st by averaging xt − m̂t over all measurements in the given month.

– E.g., the value of st for January is given by averaging all values from January.

• We are left with the random part ẑt = xt − m̂t − ŝt.

• For the Australian electricity data:
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CBE <- ts(CBE,frequency=12)
plot(decompose(CBE))
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• The random term does not look stationary. The solution is to log-transform the data - see Ch. 1.5.5 in
the book.

logCBE <- ts(log(CBEdata[,3]),frequency=12)
plot(decompose(logCBE))
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random<-decompose(logCBE)$random[7:382]
acf(random, main="Random part of CBE data")
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8 Basic stochastic process models

8.1 Stochastic processes
• Last time we introduced stochastic processes
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• We saw three basic models:

– White noise: independent random variables - not very interesting by itself, but an essential
building block in more complicated/realistic models.

– Random walk: cumulatively adding white noise - non-stationary, tendency to wander off.
– Autoregressive process AR(1): weaker dependence on previous value than random walk, is

stationary or not depending on choice of parameters.

• Today we will consider more stochastic process models.

• First we take a recap of the three models above, and add some details.

9 White noise

9.1 White noise
• A time series Wt, t = 1, . . . , n is white noise if the variables W1, W2, . . . , Wn are

– independent
– identically distributed
– have mean zero and variance σ2

• From the definition it follows that white noise is a second order stationary process since
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– The mean is constant (= 0)
– The variance function σ2(t) = σ2 is constant
– The autocorrelation Cor(Wt, Wt+k) = 0 for all k ̸= 0, which does not depend on t.

• Hence, we have a well-defined mean,
µ = 0,

autocovariance function

γ(k) = Cov(Wt, Wt+k) =
{

σ2 for k = 0,

0 for k ̸= 0,

and autocorrelation function

ρ(k) =
{

1 for k = 0,

0 for k ̸= 0.

9.2 Correlogram for white noise
• To understand how white noise behaves we can simulate it with R and plot both the series and the

autocorrelation:
w <- rnorm(100, mean = 0, sd = 1)
par(mfrow = c(2,1), mar = c(4,4,0,0))
ts.plot(w)
acf(w)
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• 95% of the estimated autocorrelations at lag k > 0 lie between the blue lines.

• It is a good idea to repeat this simulation and plot a few times to appreciate the variability of the
results.
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10 Random walk

10.1 Random walk
• A time series Xt is called a random walk if

Xt = Xt−1 + Wt

where Wt is a white noise series.

• Using Xt−1 = Xt−2 + Wt−1 we get

Xt = Xt−2 + Wt−1 + Wt

• Substituting for Xt−2 we get
Xt = Xt−3 + Wt−2 + Wt−1 + Wt

• Continuing this way, assuming we start at X0 = 0,

Xt = W1 + W2 + · · · + Wt

10.2 Properties of random walk
• A random walk Xt has a constant mean function

µ(t) = 0.

• The variance function is given by

σ2(t) = V ar(Xt) = V ar(W1 + · · · + Wt) = V ar(W1) + · · · + V ar(Wt) = t · σ2,

which clearly depends on the time t, so the process is not stationary.

• Similarly, one can compute the autocovariance and autocorrelation function (see Cowpertwait and
Metcalfe for details)

Cov(Xt, Xt+k) = tσ2.

Cor(Xt, Xt+k) = 1√
1 + k/t

• The autocorrelation is non-stationary.

• When t is large compared to k we have very high correlation (close to 1)

• We expect the correlogram of a reasonably long random walk to show very slow decay.

10.3 Simulation and correlogram of random walk
• We already know how to simulate Gaussian white noise Wt(with rnorm) and the random walk is just

generated by repeatedly adding noise terms:
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w <- rnorm(1000)
rw<-w
for(t in 2:1000) rw[t]<- rw[t-1] + w[t]
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(rw)
acf(rw, lag.max = 100)
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• The slowly decaying acf for random walk is a classical sign of non-stationarity, indicating there may be
some kind of trend. In this case there is no real trend, since the theoretical mean is constant zero, but
we refer to the apparent trend which seems to change directions unpredictiably as a stochastic trend.

10.4 Differencing
• If a non-stationary time series shows a stochastic trend we can try to study the time series of

differences and see if that is stationary and easier to understand:

∇Xt = Xt − Xt−1.

• Since we assume X0 = 0 we get
∇X1 = X1.

• Specifically when we difference a random walk Xt = Xt−1 + Wt we recover the white noise series

∇Xt = Wt
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diffrw <- diff(rw)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(diffrw)
acf(diffrw, lag.max = 30)
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• If a time series needs to be differenced to become stationary, we say that the series is integrated (of
order 1).

10.5 Example: Exchange rate
• We consider a data set for the exchange rate from GBP to NZD. We observe what looks like an

unpredictable stochastic trend and we would like to see if it could reasonably be described as a random
walk.

www <- "https://asta.math.aau.dk/eng/static/datasets?file=pounds_nz.dat"
exchange_data <- read.table(www, header = TRUE)[[1]]
exchange <- ts(exchange_data, start = 1991, freq = 4)
plot(exchange)
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• We difference the series and see if the differences looks like white noise:
diffexchange <- diff(exchange)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
plot(diffexchange)
acf(diffexchange)
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• The first order difference looks reasonably stationary, so the original exchange rate series could be
considered integrated of order 1. However, there is an indication of significant autocorrelation at lag 1,
so a random walk might not be a completely satisfactory model for this dataset.

11 First order auto-regressive models AR(1)

11.1 Auto-regressive model of order 1: AR(1)
• If the correlogram shows a significant auto-correlation at lag 1, it means that Xt and Xt−1 are correlated.

• The simplest way to model this, is the auto-regressive model of order one, AR(1):

Xt = α1Xt−1 + Wt

where Wt is white noise and the auto-regressive coefficient α1 is a parameter to be estimated from data.

11.2 Properties of AR(1) models
• From last time: The model can only be stationary if −1 < α1 < 1 such that the dependence on the

past decreases with time.

• For a stationary AR(1) model with −1 < α1 < 1 we found

– µ(t) = 0
– V ar(Xt) = σ2

t = σ2/(1 − α2
1)

– γ(k) = αk
1σ2/(1 − α2

1)
– ρ(k) = αk

1

11.3 Simulation of AR(1) models
• R has a built-in function arima.sim to simulate AR(1) models (and other more complicated models

called ARMA and ARIMA).

• It needs the model (i.e. the autoregressive coefficient α1) and the desired number of time steps n.

• To simulate 200 time steps of AR(1) with α1 = 0.7 we do:
x <- arima.sim(model = list(ar = 0.7), n = 200)
plot(x)
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• Here we have compared the empirical correlogram with the theoretical values of the model.
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11.4 Fitted AR(1) models
• There are several ways to estimate the parameters in an AR(1) process. We use the so-called maximum

likelihood estimation method (MLE).

• We skip the details of this, and simply use the function ar:
fit <- ar(x, order.max = 1, method="mle")

• The resulting object contains the value of the estimated parameter α̂1 and a bunch of other information.

• In this example, the input data are artificial so we know that α̂1 should ideally be close to 0.7:
fit$ar

## [1] 0.675656

• An estimate of the variance (squared standard error) of α̂1 is given in fit$asy.var.coef
fit$asy.var.coef

## [,1]
## [1,] 0.002740389

• The estimated std. error is the square root of this:
se <- sqrt(fit$asy.var.coef)
se

## [,1]
## [1,] 0.05234872
ci <- c(fit$ar - 2*se, fit$ar + 2*se)
ci

## [1] 0.5709586 0.7803535

11.5 Residuals for AR(1) models
• The AR(1) model defined earlier has mean 0. However, we cannot expect data to fulfill this.

• This is fixed by subtracting the average X̄ of the data before doing anything else, so the model that is
fitted is actually:

Xt − X̄ = α1 · (Xt−1 − X̄) + Wt

• The fitted model can be used to make predictions. To predict Xt from Xt−1, we use that Wt is white
noise, so we expect it to be zero on average:

x̂t − x̄ = α̂1 · (xt−1 − x̄),

so
x̂t = x̄ + α̂1 · (xt−1 − x̄), t ≥ 2.

• We can estimate the white noise terms as usual by the model residuals:

ŵt = xt − x̂t, t ≥ 2.

• If the model is correct, the residuals should look like a sample of white noise. We check this by plotting
the acf:
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res <- na.omit(fit$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(res)
acf(res)
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• It naturally looks good for this artificial dataset.

11.6 AR(1) model fitted to exchange rate
• A random walk is an example of an AR(1) model with α1 = 1. It didn’t provide an ideal fit for the

exchange rate dataset, so we might suggest a stationary AR(1) model with α1 as a parameter to be
estimated from data:

fitexchange <- ar(exchange, order.max = 1, method="mle")
fitexchange$ar

## [1] 0.9437125
resexchange <- na.omit(fitexchange$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resexchange)
acf(resexchange)
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• This does not appear to really provide a better fit than the random walk model proposed earlier.

• An alternative would be to propose an AR(1) model for the differenced time series ∇Xt = Xt − Xt−1:
dexchange <- diff(exchange)
fitdiff <- ar(dexchange, order.max = 1,method="mle")
fitdiff$ar

## [1] 0.3495624
resdiff <- na.omit(fitdiff$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resdiff)
acf(resdiff)
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11.7 Prediction/forecasting from AR(1) model
• We can use a fitted AR(1) model to predict the next value of an observed time series x1, . . . , xn.

x̂n+1 = x̄ + α̂1 · (xn − x̄).
• This can be iterated to predict xn+2

x̂n+2 = x̄ + α̂1 · (x̂n+1 − x̄),

and we can continue this way.

• Prediction is performed by predict in R.

• E.g. for the AR(1) model fitted to the exchange rate data, the last observation is in third quarter of
2000. If we want to predict 1 year ahead to third quarter of 2001:

pred1 <- predict(fitexchange, n.ahead = 4)
pred1

## $pred
## Qtr1 Qtr2 Qtr3 Qtr4
## 2000 3.501528
## 2001 3.473716 3.447469 3.422699
##
## $se
## Qtr1 Qtr2 Qtr3 Qtr4
## 2000 0.1348262
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## 2001 0.1853845 0.2208744 0.2482461

• Note how the prediction returns both the predicted value and a standard error for this value.

• We can use this to say that we are 95% confident that the exchange rate in third quarter of 2001 would
be within 3.42 ± 2 · 0.25.

• We can plot a prediction and approximate 95% pointwise prediction intervals with ts.plot (where we
use a 10 year prediction – which is a very bad idea – to see how it behaves in the long run):

pred10 <- predict(fitexchange, n.ahead = 40)
lower10 <- pred10$pred-2*pred10$se
upper10 <- pred10$pred+2*pred10$se
ts.plot(exchange, pred10$pred, lower10, upper10, lty = c(1,2,3,3))
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12 Auto-regressive models of higher order (AR(p)-models)

12.1 Auto-regressive models of higher order
• The first order auto-regressive model can be generalised to higher order by adding more lagged terms

to explain the current value Xt.

• An AR(p) process is
Xt = α1Xt−1 + α2Xt−2 + · · · + αpXt−p + Wt

where Wt is white noise and α1, α2, . . . , αp are parameters to be estimated from data.

• To simplify the notation, we introduce the backshift operator B, that takes the time series one step
back, i.e.

BXt = Xt−1
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• This can be used repeatedly, for example B2Xt = BBXt = BXt−1 = Xt−2. We can then make a
“polynomial” of backshift operators

α(B) = 1 − α1B − α2B2 − · · · − αpBp

and write the AR(p) process as
Wt = α(B)Xt.

12.2 Stationarity for AR(p) models
• Not all AR(p) models are stationary. To check that a given AR(p) model is stationary we consider the

characteristic equation
1 − α1z − α2z2 − · · · − αpzp = 0.

• The characteristic equation can be written with the polynomial α from previous slide, but with z
inserted instead of B, i.e.

α(z) = 0.

• The process is stationary if and only if all roots of the characteristic equation have an absolute value
that is greater than 1.

• Solving a p-order polynomial is hard for high values of p, so we will let R do this for us.

12.3 Estimation of AR(p) models
• For an AR(p) model there are typically two things we need to estimate:

1. The maximal non-zero lag p in the model.
2. The autoregressive coefficients/parameters α1, . . . , αp.

• To select p we can use AIC (Akaike’s Information Criterion).
– More complex models can always fit a dataset better
– AIC is essentially a balance between model simplicity and good fit.
– The AIC results in a single real number, where smaller is better.
– The ar function in R uses AIC to automatically select the value for p by calculating the AIC for all

models with p between 1 and some chosen maximal value, and picking the one with the smallest
AIC.

• Once the order p is chosen, the estimates α̂1, . . . , α̂p can be computed by the ar function.
– The corresponding standard errors can be found as the square root of the diagonal of the matrix

stored as asy.var.coef in the fitted model object.

12.4 Example of AR(p) model for electricity data
• We try to fit an AR(p) model to the detrended data for the log of the electricity production in Australia:
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fit <- ar(random, order.max = 5,method="mle")
fit

##
## Call:
## ar(x = random, order.max = 5, method = "mle")
##
## Coefficients:
## 1 2 3 4 5
## 0.2047 0.0714 -0.0280 -0.1975 -0.2440
##
## Order selected 5 sigma^2 estimated as 0.0003103
resid <- na.omit(fit$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resid)
acf(resid, lag.max = 30)

32



Time

re
si

d

5 10 15 20 25 30

−
0.

06
0.

00

0.0 0.5 1.0 1.5 2.0 2.5

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series  resid

• There are too many significant autocorrelations. Suggests the model is not a good fit.

• We are not assured that the estimated model will be stationary. To check stationarity we solve α(z) = 0:
abs(polyroot(c(1,-fit$ar)))

## [1] 1.148425 1.415987 1.415987 1.148425 1.549525

• All absolute values of the roots are greater than 1, indicating stationarity.

13 Moving average models (MA(q)-models)

13.1 The moving average model
• A moving average process of order q, MA(q), is defined by

Xt = Wt + β1Wt−1 + β2Wt−2 + · · · + βqWt−q

where Wt is a white noise process with mean 0 and variance σ2
w and β1, β2, . . . , βq are parameters to be

estimated.

• The moving average process can also be written using the backshift operator:

Xt = β(B)Wt

where the polynomial β(B) is given by

β(B) = 1 + β1B + β2B2 + · · · + βqBq.
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• Since a moving average process is a finite sum of stationary white noise terms it is itself stationary with
mean and variance:

– Mean µ(t) = 0.
– Variance σ2(t) = σ2

w(1 + β2
1 + β2

2 + · · · + β2
q ).

• The autocorrelation function is

ρ(k) =


1 k = 0∑q−k

i=0 βiβi+k/
∑q

i=0 β2
i k = 1, 2, . . . , q

0 k > q

where β0 = 1.

13.2 Simulation of MA(q) processes
• An MA(q) process can be simulated by first generating a white noise process Wt and then transforming

it using the MA coefficients.

• To simulate a model with β1 = −0.7, β2 = 0.5, and β3 = −0.2 we can use arima.sim:
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• The theoretical autocorrelations are in this case:

ρ(1) = 1 · (−0.7) + (−0.7) · 0.5 + 0.5 · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = −0.65

ρ(2) = 1 · 0.5 + (−0.7) · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = 0.36

ρ(3) = 1 · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = −0.11

and ρ(k) = 0 for k > 3.

• We plot the acf of the simulated series together with the theoretical one.
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acf(xsim,ylim=c(-1,1))
points(0:25, c(1,-.65, .36, -.11, rep(0,22)), col = "red")
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13.3 Estimation of MA(q) models
• To estimate the parameters of an MA(3) model we use arima:

xfit <- arima(xsim, order = c(0,0,3))
xfit

##
## Call:
## arima(x = xsim, order = c(0, 0, 3))
##
## Coefficients:
## ma1 ma2 ma3 intercept
## -0.5996 0.4471 -0.1811 0.0711
## s.e. 0.0690 0.0766 0.0784 0.0442
##
## sigma^2 estimated as 0.8772: log likelihood = -270.96, aic = 551.91

• The function arima does not include automatic selection of the order of the model so this has to be
chosen beforehand or selected by comparing several proposed models and choosing the model with the
minimal AIC.

AIC(xfit)

## [1] 551.9113

35



14 Auto-regressive moving average models (ARMA)

14.1 Mixed models: Auto-regressive moving average models
• A time series Xt follows an auto-regressive moving average (ARMA) process of order (p, q), denoted

ARMA(p, q), if

Xt = α1Xt−1 + α2Xt−2 + · · · + αpXt−p + Wt + β1Wt−1 + β2Wt−2 + · · · + βqWt−q

where Wt is a white noise process and α1, α2, . . . , αp, β1, β2, . . . , βq are parameters to be estimated.

• We can simulate an ARMA model with arima.sim. E.g. an ARMA(1, 1) model with α1 = −0.6 and
β1 = 0.5:

xarma <- arima.sim(model = list(ar = -0.6, ma = 0.5), n = 200)
plot(xarma)
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• Estimation is done with arima as before.

14.2 Example with exchange rate data
For the exchange rate data we may e.g. suggest either a AR(1), MA(1) or ARMA(1, 1) model. We can
compare fitted models using AIC (smaller is better):
exchange_ar <- arima(exchange, order = c(1,0,0))
AIC(exchange_ar)

## [1] -37.40417
exchange_ma <- arima(exchange, order = c(0,0,1))
AIC(exchange_ma)

## [1] -3.526895
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exchange_arma <- arima(exchange, order = c(1,0,1))
AIC(exchange_arma)

## [1] -42.27357
exchange_arma

##
## Call:
## arima(x = exchange, order = c(1, 0, 1))
##
## Coefficients:
## ar1 ma1 intercept
## 0.8925 0.5319 2.9597
## s.e. 0.0759 0.2021 0.2435
##
## sigma^2 estimated as 0.01505: log likelihood = 25.14, aic = -42.27
par(mfrow = c(2,1), mar = c(4,4,1,1))
resid_arma <- na.omit(exchange_arma$residuals)
plot(resid_arma)
acf(resid_arma)
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15 Models with exogenous variables
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15.1 Exogenous variables
• The ARMA processes are flexible models for a time series Yt, t = 1, . . . , n evolving randomly over time,

but they do not include the possibility that anything is influencing Yt.
• An exogeneous variable is another variable, say Xt, that influences the behaviour of Yt

– Wind power production Yt is influenced by the wind speed Xt

– The velocity of a DC motor Yt is influenced by the input voltage Xt

• Here Xt may be another stochastic process, which we do not model, but only consider as given, or it
might be something we can control.

15.2 Data example
• The dataset below contains data from Jan 7 to Jul 13 2022 on two variables

– forecast: Total day ahead forecasted wind and solar energy production
– price: Day ahead elspot prices with weekly variation removed

elspot<-read.csv("https://asta.math.aau.dk/eng/static/datasets?file=elspot.csv", header = TRUE)
forecast<-elspot[,2]
price<-elspot[,3]
ts.plot(ts(forecast),ts(-price),col=1:2)
legend("topright",legend=c("forecast","- price"),col=1:2,lty=1)
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15.3 Regression models with exogenous variables
• We can combine regression models with ARMA models to obtain a stochastic process which is influenced

by exogenous variables.
• Consider a linear regression of Yt on Xt, but where the noise term is an ARMA process:

Yt = γ0 + γ1Xt + ϵt, α(B)ϵt = β(B)Wt

• If we isolate ϵt = Yt − γ0 − γ1Xt and insert into the ARMA expression, we get something that looks
more like an ARMA process, but with Yt adjusted by the exogenous variable:

α(B)(Yt − γ0 − γ1Xt) = β(B)Wt

• The purpose of fitting such a model is both to obtain a good model for the evolution of the data and to
obtain an understanding of the relation between Yt and Xt.

• Above, Xt is a single stochastic process, but we can also include multiple stochastic processes by making
a multiple regression model with an ARMA model for the errors.

15.4 Example
• As an example consider a simple linear regression combined with an AR(1) process for noise terms:

Yt = γ0 + γ1Xt + ϵt, ϵt = α1ϵt−1 + Wt

or, since ϵt−1 = Yt−1 − γ0 − γ1Xt−1,

Yt = α1Yt−1 + (1 − α1)γ0 + γ1(Xt − α1Xt−1) + Wt

• Notice that the model behaves like an AR(1) process, but instead of having a constant mean of 0, its
mean is constantly adjusted by the exogenous variable.
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15.5 Simulation of the example
• We simulate some data resembling the example, where we let Xt follow a sine curve:

alpha = 0.9; gamma = 1; n = 100
x = as.ts(5*sin(1:n/5))
eps = arima.sim(model=list(ar=alpha),n=n)
y = gamma*x+eps
ts.plot(x,y,col=1:2)
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• We should think of the red curve as some data we want to model, and the black curve as another
variable which we believe may influence the data.

• We can also plot Xt against Yt to get a view of the relation between the two variables.
plot(as.numeric(x),as.numeric(y))
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15.6 Estimation and model checking
• We can estimate the parameters using the arima function in R.
• We fit a linear regression model with AR(1) noise to the simulated data (i.e. the true model used for

simulation):
mod=arima(y,order=c(1,0,0),xreg=x); mod

##
## Call:
## arima(x = y, order = c(1, 0, 0), xreg = x)
##
## Coefficients:
## ar1 intercept x
## 0.8069 0.0679 1.0551
## s.e. 0.0569 0.4795 0.1018
##
## sigma^2 estimated as 0.923: log likelihood = -138.41, aic = 284.82

• The fitted model becomes

Yt = 0.0679 + 1.0551 · Xt + ϵt, ϵt = 0.8069 · ϵt−1 + Wt

• The errors ϵ̂t = yt − 0.0679 + 1.0551 · xt should behave like an AR(1)-model with α̂ = 0.8069.
– So the residuals ϵt − 0.8069 · ϵt−1 should look like white noise.
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plot(resid(mod))
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15.7 Fitting AR(1) model to data example
• Recall the elspot price dataset

forecast<- ts(forecast)
price<-ts(price)
model=arima(price,order=c(1,0,0),xreg=forecast); model

##
## Call:
## arima(x = price, order = c(1, 0, 0), xreg = forecast)
##
## Coefficients:
## ar1 intercept forecast
## 0.3886 1715.8412 -0.3053
## s.e. 0.0680 73.2894 0.0271
##
## sigma^2 estimated as 117486: log likelihood = -1364.2, aic = 2736.41

• So we get the model

pricet = 1715.8412 − 0.3053 · forecastt + ϵt, ϵt = 0.3886 · ϵt−1 + Wt.

plot(resid(model))
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• Residuals indicate that there could be some weekly variation not accounted for.

15.8 Prediction
• Prediction can only be performed if we know the behavior of Xt for future time points, for example if

we are able to control it.
• For the previous example we assume that the sine curve continues:

nnew = 20
xnew = lag(as.ts(5*sin(((n+1):(n+nnew))/5)),-n)
ts.plot(x,y,xnew,col=c(1,2,1),lty=c(1,1,2))
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• We use the predict function.
p = predict(mod,n.ahead=nnew,newxreg=xnew)
ts.plot(x,y,xnew,p$pred,p$pred+2*p$se,p$pred-2*p$se,col=c(1,2,1,2,2,2),lty=c(1,1,2,2,3,3))
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15.9 An example with delay
• If we model the influence of Xt on Yt, it may take some time before Yt responds to a change in Xt.

– Say the delay is k time steps.
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• We want to model the effect of Xt−k on Yt.
– We may not know the delay k, so we may need to estimate it first.

• We simulate a dataset with a built-in delay, and then we model this afterwards.
alpha = 0.5; gamma = 1; n = 100; delay = 5
x = as.ts(5*sin(1:(n+delay)/5))
eps = arima.sim(model=list(ar=alpha),n=n+delay)
y = gamma*lag(x,-delay)+eps
dat_lag = ts.intersect(x,y)
ts.plot(dat_lag[,1],dat_lag[,2],col=1:2)
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15.10 The cross-correlation function
• The cross correlation function is used for checking the relation between two time series at different

time points:
ρxy(t + k, t) = Cor(Xt+k, Yt).

• Values that are close to 1 or −1 indicate that the two time series are closely related if Xt is delayed by
k time steps.

• Cross-correlation function for the simulated data
cc = ccf(dat_lag[,1],dat_lag[,2],lag.max=10)
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• Cross-correlation function for the elspot data:
ccf(forecast,price)
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15.11 Fitting models with lag
• We estimate the lag to be the one where the cross-correlation function is maximal:

estlag = cc$lag[which(cc$acf==max(abs(cc$acf)))]
estlag

## [1] -5

• Plotting the data with this lags can be useful to check the choice:
dat_shifted = ts.intersect(lag(as.ts(dat_lag[,1]),estlag),dat_lag[,2] )
ts.plot(dat_shifted[,1],dat_shifted[,2],col=1:2)
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• We can now fit a model with this lag:
mod=arima(dat_shifted[,2],order=c(1,0,0),xreg=dat_shifted[,1]); mod

##
## Call:
## arima(x = dat_shifted[, 2], order = c(1, 0, 0), xreg = dat_shifted[, 1])
##
## Coefficients:
## ar1 intercept dat_shifted[, 1]
## 0.5938 -0.2047 1.0526
## s.e. 0.0820 0.2347 0.0615
##
## sigma^2 estimated as 0.8884: log likelihood = -129.39, aic = 266.79

15.12 ARMAX models
• An alternative way of including exogenous variables into an ARMA model is an ARMAX model.
• The ARMAX(p, q, b) model is an ARMA(p, q) model including b terms of an exogenous variable, i.e. it
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is defined by

Yt =
p∑

i=1
αiYt−i +

b∑
i=1

γiXt−i + Wt +
q∑

i=1
βiWt−i

• Using the backshift operator, this can be written as

α(B)Yt = γ(B)Xt + β(B)Wt

with α(B) = 1 −
∑p

i=1 αiB
i, β(B) = 1 +

∑q
i=1 βiB

i, and γ(B) =
∑b

i=1 γiB
i.

• Compare with the regression with ARMA noise:

α(B)(Yt − γ0 − γ1Xt) = β(B)Wt ⇒ α(B)Yt = α(B)(γ0 + γ1γXt) + β(B)Wt

• The difference is only how the model includes the exogenous variable.
• It is mostly a matter of taste which kind of model you should choose.
• Only the regression with ARMA noise is included into R as standard.

16 Continuous time processes

16.1 Discrete vs. continuous time
There are two fundamentally different model classes for time series data.

• Discrete time stochastic processes
– Variables given at equally spaced time points

• Continuous time stochastic processes
– Variables that evolve over a continuous time scale

So far we have only looked at the discrete time case. We will finish todays lecture by looking a bit at the
continuous time case, just to give you an idea of this topic.

16.2 Continuous time stochastic processes
• In this setup we see the underlying Xt as a continuous function of t for t in some interval [0, T ].

• In principle we imagine that there are infinitely many data points, simply because there are infinitely
many time points between 0 and T .

• In practice we will always only have finitely many data points.

• But we can imagine that the real data actually contains all the data points. We are just not able to
measure them (and to store them in a computer).

• With a model for all datapoints, we are - through simulation - able to describe the behaviour of data.
Also between the observations.

16.3 The Wiener process
• A key example of a process in continuous time will be the so–called Wiener process or Brownian

motion.

• Here are three simulated realizations (black, blue and red) of this process: here
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## Package 'Sim.DiffProc', version 4.9
## browseVignettes('Sim.DiffProc') for more informations.
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• A Wiener process has the following properties:
– It starts in 0: B0 = 0.
– It has independent increments: For 0 < s < t it holds that Bt − Bs is independent of everything

that has happened up to time s, that is Bu for all u ≤ s.
– It has normally distributed increments: For 0 < s < t it holds that the increment Bt − Bs is

normally distributed with mean zero and variance t − s:

Bt − Bs ∼ norm(0, t − s).

• The intuition of this process is that it somehow changes direction all the time: How the process changes
after time s will be independent of what has happened before time s. So whether the process should
increase or decrease after s will not be affected by how much it was increasing or decreasing before.
This gives the very bumpy behaviour over time.

16.4 Stochastic differential equations
• A common way to define a continuous time stochastic process model is through a stochastic differential

equation (SDE) which we will turn to shortly, but before doing so we will recall some basic things about
ordinary differential equations.

• Example: Suppose f is an unknown differentiable function satisfying the differential equation

df(t)
dt

= −4f(t)

with initial condition f(0) = 1. This equation has the solution

f(t) = exp(−4t)
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• With a slightly unusual notation we can rewrite this as

df(t) = −4 · f(t)dt

• This equation has the following (hopefully intuitive) interpretation:

– When time increases by a small amount dt (from t to t+dt) the value of f changes (approximately)
by −4f(t) · dt.

• So when t is increased, then f is decreased, and the decrease is proportional to the value of f(t). That
is why f decreases slower and slower, when t is increased.

• We say that the function has a drift towards zero, and this drift is determined by the value of the
function.

16.5 Stochastic differential equations
• It will probably never be true that data behaves exactly like the exponentially decreasing curve on the

previous slide.

• Instead we will consider a model, where some random noise from a Wiener process has been added to
the growth rate. Two different (black/blue) simulated realizations can be seen below
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• The type of process that is simulated above is described formally by the equation

dXt = −4Xtdt + 0.1dBt

• This is called a Stochastic Differential Equation (SDE), and the processes simulated above are
called solutions of the stochastic differential equation.

• The SDE dXt = −4Xtdt + 0.1dBt has two terms:

– −4Xtdt is the drift term.
– 0.1dBt is the diffusion term.

• The intuition behind this notation is very similar to the intuition in the equation df(t) = −4 · f(t) dt
for an ordinary differential equation. When the time is increased by the small amount dt, then the
process Xt is increased by −4Xt dt AND by how much the process 0.1Bt has increased on the time
interval [t, t + dt].

• So this process has a drift towards zero, but it is also pushed in a random direction (either up or down)
by the Wiener process (more precisely, the process 0.1Bt)
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