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1 The regression problem
1.1 Example

• We will study the dataset in Agresti Table 13.1 available as Income.txt on the course website. We
read in data in RStudio

Income <- read.delim("https://asta.math.aau.dk/datasets?file=Income.txt")

• We have a sample with measurements of 3 variables:
– y=income: Quantitative variable, which is yearly income. This will be our response.
– x=education: Quantitative predictor, which is the number of years of education.
– z=race: Explanatory factor with levels b(black), h(hispanic) and w(white).

• We always start with some graphics (remember the function gf_point for plotting points and gf_lm
for adding a regression line).
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library(mosaic)
gf_point(inc ~ educ, color = ~race, data = Income) %>% gf_lm()
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• An unclear picture, but a tendency to increasing income with increasing education.
• The trend lines for the three races are different. But is the difference significant? Or can the difference

be explained by sampling variation?
• Such a regression with both qualitative and quantitative predictors is called an analysis of covariance

(ANCOVA). When the model only contains qualitative predictors, the problem is known as analysis of
variance (ANOVA) which is the topic of the next lecture.

2 Dummy coding
2.1 Dummy coding

• First, we will look at the model without interaction, i.e. the effect of education is the same for all
races, which corresponds to parallel lines.

• We also have to introduce dummy coding of the factor z:

– z1 = 1 if race=b and zero otherwise
– z2 = 1 if race=h and zero otherwise

• This determines the regression model:

E(y|x, z) = α + βx + β1z1 + β2z2

which corresponds to parallel regressions lines for each race.

• w: (z1 = 0, z2 = 0) E(y|x) = α + βx
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• b: (z1 = 1, z2 = 0) E(y|x) = α + β1 + βx.

• h: (z1 = 0, z2 = 1) E(y|x) = α + β2 + βx.

• β1 is the difference in Intercept between black and white.

• β2 is the difference in Intercept between Hispanic and white.

2.2 Example
• We want to tell R that we want race to be a factor (grouping variable) and we want w as reference level

for race (default is lexicographical ordering, i.e. (b, h, w) and b would then be the reference):
Income$race <- factor(Income$race)
Income$race <- relevel(Income$race, "w")

• Then we use + in the model formula to only have additive effects of educ and race, i.e. a model without
interaction:

model1 <- lm(inc ~ educ + race, data = Income)
summary(model1)

##
## Call:
## lm(formula = inc ~ educ + race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.664 -9.622 -1.642 6.552 57.620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.6635 8.4121 -1.862 0.0665 .
## educ 4.4317 0.6191 7.158 4.42e-10 ***
## raceb -10.8744 4.4730 -2.431 0.0174 *
## raceh -4.9338 4.7632 -1.036 0.3036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.46 on 76 degrees of freedom
## Multiple R-squared: 0.462, Adjusted R-squared: 0.4408
## F-statistic: 21.75 on 3 and 76 DF, p-value: 2.853e-10

• The common slope to educ is estimated to be β̂ = 4.4316685, with corresponding p-value=4.42 × 10−10

which is significantly different from zero.
• There is a clear positive effect of educ on income.
• The estimate for w-intercept is α̂ = −15.6635, which isn’t significantly different from zero if we test at

level 5% (this test is not really of interest).
• The difference between b- and w-intercept (raceb) is β̂1 = −10.8744, which is significant with

p-value=1.74%.
• There is no significant difference between h- and w-intercept.

plotModel(model1)
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2.3 Example: Prediction equations

summary(model1)

##
## Call:
## lm(formula = inc ~ educ + race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.664 -9.622 -1.642 6.552 57.620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.6635 8.4121 -1.862 0.0665 .
## educ 4.4317 0.6191 7.158 4.42e-10 ***
## raceb -10.8744 4.4730 -2.431 0.0174 *
## raceh -4.9338 4.7632 -1.036 0.3036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.46 on 76 degrees of freedom
## Multiple R-squared: 0.462, Adjusted R-squared: 0.4408
## F-statistic: 21.75 on 3 and 76 DF, p-value: 2.853e-10

• Reference/baseline group (white):
ŷ = −15.66 + 4.43x
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• Black:
ŷ = −15.66 − 10.87 + 4.43x = −26.54 + 4.43x

• Hispanic:
ŷ = −15.66 − 4.93 + 4.43x = −20.60 + 4.43x

2.4 Agresti – summary

3 Model with interaction
3.1 Interaction

• In the following we will expand the model to include interaction between the effects of race and education
on income. Before proceeding, let us recall what interaction means (and doesn’t mean) in this context:

• Interaction between the effects of race and education on income does not mean that the values of
education and race themselves are related or affect each other.

• Interaction between the effects of race and education on income means that the relationship between
education and income depends on the value of race. I.e. for each fixed value of race the slope of the line
relating education and income may have a different value.

• Often we just refer to this as “interaction between education and race” when it really should read
“interaction between the effects of race and education on income”.

3.2 Interaction
• We will expand the regression model, so we include interaction between x and z1 respectively z2:

E(y|x, z) = α + βx + β1z1 + β2z2 + β3z1x + β4z2x.
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• This yields a regression line for each race:
• w (z1 = 0, z2 = 0): E(y|x) = α + βx
• b (z1 = 1, z2 = 0): E(y|x) = α + β1 + (β + β3)x.
• h (z1 = 0, z2 = 1): E(y|x) = α + β2 + (β + β4)x.
• β1 is the difference in Intercept between black and white, while β3 is the difference in slope

between black and white.
• β2 is the difference inIntercept between Hispanic and white, while β4 is the difference in slope

between Hispanic and white.

3.3 Example: Prediction equations
• When we use * in the model formula we include interaction between educ and race:

model2 <- lm(inc ~ educ * race, data = Income)
summary(model2)

##
## Call:
## lm(formula = inc ~ educ * race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.064 -9.448 -1.453 6.167 56.936
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -25.8688 10.4982 -2.464 0.0161 *
## educ 5.2095 0.7828 6.655 4.3e-09 ***
## raceb 19.3333 18.2928 1.057 0.2940
## raceh 9.2640 24.2797 0.382 0.7039
## educ:raceb -2.4107 1.4177 -1.700 0.0933 .
## educ:raceh -1.1208 2.0060 -0.559 0.5781
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.37 on 74 degrees of freedom
## Multiple R-squared: 0.4825, Adjusted R-squared: 0.4475
## F-statistic: 13.8 on 5 and 74 DF, p-value: 1.618e-09

• Reference/baseline group (white):
ŷ = −25.87 + 5.21x

• Black:
ŷ = −25.87 + 19.33 + (5.21 − 2.41)x = −6.54 + 2.80x

• Hispanic:
ŷ = −25.87 + 9.26 + (5.21 − 1.12)x = −16.60 + 4.09x

3.4 Example: Individual tests

summary(model2)

##
## Call:
## lm(formula = inc ~ educ * race, data = Income)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -25.064 -9.448 -1.453 6.167 56.936
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -25.8688 10.4982 -2.464 0.0161 *
## educ 5.2095 0.7828 6.655 4.3e-09 ***
## raceb 19.3333 18.2928 1.057 0.2940
## raceh 9.2640 24.2797 0.382 0.7039
## educ:raceb -2.4107 1.4177 -1.700 0.0933 .
## educ:raceh -1.1208 2.0060 -0.559 0.5781
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.37 on 74 degrees of freedom
## Multiple R-squared: 0.4825, Adjusted R-squared: 0.4475
## F-statistic: 13.8 on 5 and 74 DF, p-value: 1.618e-09

• The difference in slope between b and w (educ:raceb) is estimated to β̂3 = −2.4107. With p-
value=9.33% there is no significant difference.

• Furthermore, there isn’t any significant difference of slope between h and w. In other words there is
probably not interaction between educ and race.

gf_point(inc ~ educ, color = ~ race, data = Income) %>% gf_lm()
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4 Test for no interaction
4.1 Test for no interaction

plotModel(model1)
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plotModel(model2)

8



25

50

75

100

125

10 15 20
educ

in
c

.color

w

b

h

summary(model1)$r.squared

## [1] 0.4619906
summary(model2)$r.squared

## [1] 0.4824822

• Is model2 significantly better than model1? I.e. is R2 significantly higher for model2?

4.2 Hypothesis and test statistic
• The simpler model1 is obtained from the more complicated model2 by setting β3 = 0 and β4 = 0, so the

null hypothesis “the simpler additive model describes data sufficiently well compared to the complicated
interaction model” is really the simple mathematical hypothesis:

H0 : β3 = 0, β4 = 0.

• We will look at the difference between R2 for the two models, but as before (for multiple linear regression)
we have to convert this to an F statistic which we can then calculate a p-value for.

• Formula for Fobs (no need to learn this by heart):

Fobs = (R2
2 − R2

1)/(df1 − df2)
(1 − R2

2)/df2
where df1 and df2 are n minus the number of model parameters for the two models (i.e. 80-4=76 and
80-6=74 in our case).

• The formula for Fobs can be rewritten in terms of sums of squared errors (SSE) for each model (no
need to memorize it):

Fobs = (SSE1 − SSE2)/(df1 − df2)
(SSE2)/df2

.
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• In the literature SSE is sometimes denoted by RSS for Residual Sums of Squares; i.e SSE = RSS.

4.3 Test for no interaction in R
• In R the calculations are done using anova:

anova(model1, model2)

## Analysis of Variance Table
##
## Model 1: inc ~ educ + race
## Model 2: inc ~ educ * race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 76 18164
## 2 74 17472 2 691.84 1.465 0.2377

• The F-test for dropping the interaction educ:race has F-value=1.465, which in no way is significant
with p-value=23.77%.

5 Hierarchy of models
5.1 Hierarchy of models

• Interaction: The most general model with main effects educ and race and interaction educ:race:
Interaction <- lm(inc ~ educ * race, data = Income)

• MainEffects: The model where there are additive effects of educ and race.
MainEffects <- lm(inc ~ educ + race, data = Income)

• educEff: Model where there only is an effect of educ (simple lin. reg.).
educEff <- lm(inc ~ educ, data = Income)

• raceEff: Model where there only is an effect of race (a different mean for each group – more on this
in the ANOVA lecture).

raceEff <- lm(inc ~ race, data = Income)

• We can, corresponding to Agresti Table 13.10, make F-tests for 3 pairwise comparisons of models.

5.2 Example
• Comparing MainEffects and Interaction is what we have already done.

anova(MainEffects, Interaction)

## Analysis of Variance Table
##
## Model 1: inc ~ educ + race
## Model 2: inc ~ educ * race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 76 18164
## 2 74 17472 2 691.84 1.465 0.2377

• We recognize F = 1.465 with p-value=23.77%, i.e. model2 isn’t significantly better than model1. So no
educ:race interaction.
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• In the same manner we can compare educEff and MainEffects. I.e. we investigate whether the effect
of race can be left out.

anova(educEff, MainEffects)

## Analysis of Variance Table
##
## Model 1: inc ~ educ
## Model 2: inc ~ educ + race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 78 19625
## 2 76 18164 2 1460.6 3.0556 0.05292 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• If any, the effect of race is weak with p-value=5.292%.

• Finally, we compare raceEff and MainEffects. Clearly educ cannot be left out (P-value=4.422×10−10).
anova(raceEff, MainEffects)

## Analysis of Variance Table
##
## Model 1: inc ~ race
## Model 2: inc ~ educ + race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 77 30410
## 2 76 18164 1 12245 51.235 4.422e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.3 Example
• The methods generalize to models with more than 2 predictors.
• We return to the dataset Ericksen, where we study the response crime:

Ericksen <- read.delim("https://asta.math.aau.dk/datasets?file=Ericksen.txt")
model <- lm(crime ~ city * highschool + city * poverty, data = Ericksen)

• The variables are:
– crime: Quantitative variable
– city: city or state
– highschool: Quantitative variable
– poverty: Quantitative variable

• The model has 3 predictors with main effects and includes
– interaction between city and highschool
– interaction between city and poverty.

summary(model)

##
## Call:
## lm(formula = crime ~ city * highschool + city * poverty, data = Ericksen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -38.741 -8.745 -1.557 7.820 47.470
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.1456 18.1254 3.373 0.001305 **
## citystate 18.1526 20.4131 0.889 0.377413
## highschool -1.5711 0.6062 -2.592 0.011979 *
## poverty 5.3105 1.4333 3.705 0.000463 ***
## citystate:highschool 0.7025 0.7327 0.959 0.341523
## citystate:poverty -5.1862 1.6619 -3.121 0.002773 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.16 on 60 degrees of freedom
## Multiple R-squared: 0.6577, Adjusted R-squared: 0.6292
## F-statistic: 23.06 on 5 and 60 DF, p-value: 7.748e-13

• There isn’t significant (p-value=34.1523%) interaction between city and highschool.
• I.e. the effect of highschool on crime is the same in metropolitan areas (city=city) and the non-

metropolitan areas (city=state).
• There is clearly (p-value=0.2773%) interaction between city and poverty.
• I.e. the effect of poverty on crime is different in metropolitan and non-metropolitan areas.
• For city=state, the effect of poverty (on crime) is smaller than in the major cities.
• Hence, poverty has larger effect on crime in the major cities than in the states outside the major cites.

5.4 Multicollinearity and variance inflation factors
• Ideally the predictors in linear regression should be uncorrelated, which is almost never the case.
• The consequence of the two predictors being correlated (collinear), is that the uncertainty of the

parameter estimates increase (because the squared standard error increases) by a factor commonly
called the variance inflation factor (VIF).

• If multiple pairs of predictors are collinear, we say that the model suffers from multicollinearity.
• If we have a model with p predictors, then the VIF of xj is:

VIFj = 1
1 − R2

j

,

where R2
j is the multiple R2 value of a model using xj as a response and the remaining p − 1 predictors

as explanatory variables.
• The larger VIFj is, the higher the collinearity between xj and the remaining predictors is.
• Rule of thumb: If a VIF is larger than 10 the collinearity is too high.
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