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1 The regression problem
1.1 We want to predict

• We will study the dataset trees, which is on the course website (and actually also already available in
R).

trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")

• In this experiment we have measurements of 3 variables for 31 randomly chosen trees:
• [,1] Girth numeric. Tree diameter in inches.
• [,2] Height numeric. Height in ft.
• [,3] Volume numeric. Volume of timber in cubic ft.
• We want to predict the tree volume, if we measure the tree height and/or the tree girth (diameter).
• This type of problem is called regression.
• Relevant terminology:

– We measure a quantitative response y, e.g. Volume.
– In connection with the response value y we also measure one (later we will consider several)

potential explanatory variable x. Another name for the explanatory variable is predictor.

1.2 Initial graphics
• Any analysis starts with relevant graphics.

library(mosaic)
library(GGally)
ggscatmat(trees) # Scatter plot matrix from GGally package
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• For each combination of the variables we plot the (x, y) values.
• It looks like Girth is a good predictor for Volume.
• If we only are interested in the association between two (and not three or more) variables we use the

usual gf_point function.

1.3 Simple linear regression
• We choose to use x=Girth as predictor for y=Volume. When we only use one predictor we are doing

simple regression.
• The simplest model to describe an association between response y and a predictor x is simple

linear regression.
• I.e. ideally we see the picture

y(x) = α + βx

where
– α is called the Intercept - the line’s intercept with the y-axis, corresponding to the response for

x = 0.
– β is called Slope - the line’s slope, corresponding to the change in response, when we increase the

predictor by one unit.
gf_point(Volume ~ Girth, data = trees) %>% gf_lm()

## Warning: Using the `size` aesthetic with geom_line was deprecated in ggplot2 3.4.0.
## i Please use the `linewidth` aesthetic instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
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1.4 Model for linear regression
• Assume we have a sample with joint measurements (x, y) of predictor and response.
• Ideally the model states that

y(x) = α + βx,

but due to random variation there are deviations from the line.
• What we observe can then be described by

y = α + βx + ε,

where ε is a random error, which causes deviations from the line.
• We will continue under the following fundamental assumption:

– The errors ε are normally distributed with mean zero and standard deviation σy|x.
• We call σy|x the conditional standard deviation given x, since it describes the variation in y around

the regression line, when we know x.

1.5 Least squares
• In summary, we have a model with 3 parameters:

– (α, β) which determine the line
– σy|x which is the standard deviation of the deviations from the line.

• How are these estimated, when we have a sample (x1, y1) . . . (xn, yn) of (x, y) values??
• To do this we focus on the errors

εi = yi − α − βxi

which should be as close to 0 as possible in order to fit the data best possible.
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• We will choose the line, which minimizes the sum of squares of the errors:
n∑

i=1
ε2

i =
n∑

i=1
(yi − α − βxi)2.

• If we set the partial derivatives to zero we obtain two linear equations for the unknowns (α, β), where
the solution (a, b) is given by:

b =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 and a = ȳ − bx̄

1.6 The prediction equation and residuals
• The equation for the estimates (α̂, β̂) = (a, b),

ŷ = a + bx

is called the prediction equation, since it can be used to predict y for any value of x.
• Note: The prediction equation is determined by the current sample. I.e. there is an uncertainty attached

to it. A new sample would without any doubt give a different prediction equation.
• Our best estimate of the errors is

ei = yi − ŷ = yi − a − bxi,

i.e. the vertical deviations from the prediction line.
• These quantities are called residuals.
• We have that

– The prediction line passes through the point (x̄, ȳ).
– The sum of the residuals is zero.

1.7 Estimation of conditional standard deviation
• To estimate σy|x we need Sum of Squared Errors

SSE =
n∑

i=1
e2

i =
n∑

i=1
(yi − ŷi)2,

which is the squared distance between the model and data.

• We then estimate σy|x by the quantity

sy|x =
√

SSE

n − 2

• Instead of n we divide SSE with the degrees of freedom df = n − 2. Theory shows, that this is
reasonable.

• The degrees of freedom df are determined as the sample size minus the number of parameters in the
regression equation.

• In the current setup we have 2 parameters: (α, β).

1.8 Example in R

model <- lm(Volume ~ Girth, data = trees)
summary(model)
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##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

• The estimated residuals vary from -8.065 to 9.578 with median 0.152.
• The estimate of Intercept is a = −36.9435
• The estimate of slope of Girth is b = 5.0659
• The estimate of the conditional standard deviation (called residual standard error in R) is sy|x = 4.252

with 31 − 2 = 29 degrees of freedom.

1.9 Test for independence
• We consider the regression model

y = α + βx + ε

where we use a sample to obtain estimates (a, b) of (α, β), an estimate sy|x of σy|x and the degrees of
freedom df = n − 2.

• We are going to test
H0 : β = 0 against Ha : β ̸= 0

• The null hypothesis specifies, that y doesn’t depend linearly on x.
• In other words the question is: Is the value of b far away from zero?
• It can be shown that b has standard error

seb =
sy|x√∑n

i=1(xi − x̄)2

with df degrees of freedom.
• So, we want to use the test statistic

tobs = b

seb

which has to be evaluated in a t-distribution with df degrees of freedom.

1.10 Example
• Recall the summary of our example:

summary(model)

##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

• As we noted previously b = 5.0659 and sy|x = 4.252 with df = 29 degrees of freedom.
• In the second column(Std. Error) of the Coefficients table we find seb = 0.2474.
• The observed t-score (test statistic) is then

tobs = b

seb
= 5.0659

0.2474 = 20.48

which also can be found in the third column(t value).
• The corresponding p-value is found in the usual way by using the t-distribution with 29 degrees of

freedom.
• In the fourth column(Pr(>|t|)) we see that the p-value is less than 2 × 10−16. This is no surprise since

the t-score was way above 3.

1.11 Confidence interval for slope
• When we have both the standard error and the reference distribution, we can construct a confidence

interval in the usual way:
b ± tcritseb,

where the t-score is determined by the confidence level and we find this value using qdist in R.

• In our example we have 29 degrees of freedom and with a confidence level of 95% we get tcrit =
qdist("t", 0.975, df = 29)= 2.045.

• If you are lazy (like most statisticians are):
confint(model)

## 2.5 % 97.5 %
## (Intercept) -43.825953 -30.060965
## Girth 4.559914 5.571799

• i.e. (4.56, 5.57) is a 95% confidence interval for the slope of Girth.

1.12 Correlation
• The estimated slope b in a linear regression doesn’t say anything about the strength of association

between y and x.
• Girth was measured in inches, but if we rather measured it in kilometers the slope is much larger: An

increase of 1km in Girth yield an enormous increase in Volume.
• Let sy and sx denote the sample standard deviation of y and x, respectively.
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• The corresponding t-scores
yt = y

sy
and xt = x

sx

are independent of the chosen measurement scale.
• The corresponding prediction equation is then

ŷt = a

sy
+ sx

sy
bxt

• i.e. the standardized regression coefficient (slope) is

r = sx

sy
b

which also is called the correlation between y and x.

• It can be shown that:
– −1 ≤ r ≤ 1
– The absolute value of r measures the (linear) strength of dependence between y and x.
– When r = 1 all the points are on the prediction line, which has positive slope.
– When r = −1 all the points are on the prediction line, which has negative slope.

• To calculate the correlation in R:
cor(trees)

## Girth Height Volume
## Girth 1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000

• There is a strong positive correlation between Volume and Girth (r=0.967).
• Note, calling cor on a data.frame (like trees) only works when all columns are numeric. Otherwise

the relevant numeric columns should be extracted like this:
cor(trees[,c("Height", "Girth", "Volume")])

which produces the same output as above.

• Alternatively, one can calculate the correlation between two variables of interest like:
cor(trees$Height, trees$Volume)

## [1] 0.5982497

2 R-squared: Reduction in prediction error
2.1 R-squared: Reduction in prediction error

• We want to compare two different models used to predict the response y.
• Model 1: We do not use the knowledge of x, and use ȳ to predict any y-measurement. The corresponding

prediction error is defined as

TSS =
n∑

i=1
(yi − ȳ)2

and is called the Total Sum of Squares.
• Model 2: We use the prediction equation ŷ = a + bx to predict yi. The corresponding prediction error

is then the Sum of Squared Errors

SSE =
n∑

i=1
(yi − ŷi)2.
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• We then define
r2 = TSS − SSE

TSS

which can be interpreted as the relative reduction in the prediction error, when we include x as
explanatory variable.

• This is also called the fraction of explained variation, coefficient of determination or simply
r-squared.

• For example if r2 = 0.65, the interpretation is that x explains about 65% of the variation in y, whereas
the rest is due to other sources of random variation.

2.2 Graphical illustration of sums of squares
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.

## `geom_smooth()` using formula = 'y ~ x'
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Prediction rule 2

• Note the data points are the same in both plots. Only the prediction rule changes.
• The error of using Rule 1 is the total sum of squares E1 = TSS =

∑n
i=1(yi − ȳ)2.

• The error of using Rule 2 is the residual sum of squares (sum of squared errors) E2 = SSE =∑n
i=1(yi − ŷi)2.

2.3 r2: Reduction in prediction error
• For the simple linear regression we have that

r2 = TSS − SSE

TSS

is equal to the square of the correlation between y and x, so it makes sense to denote it r2.
• Towards the bottom of the output below we can read off the value r2 = 0.9353 = 93.53%, which is a

large fraction of explained variation.
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summary(model)

##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

3 Multiple regression model
3.1 Multiple regression model

• We look at data from Table 9.15 in Agresti. The data are measurements in the 67 counties of Florida.
• Our focus is on

– The response y: Crime which is the crime rate
– The predictor x1: Education which is proportion of the population with high school exam
– The predictor x2: Urbanisation which is proportion of the population living in urban areas

3.2 Example

FL <- read.delim("https://asta.math.aau.dk/datasets?file=fl-crime.txt")
head(FL, n = 3)

## Crime Education Urbanisation
## 1 104 82.7 73.2
## 2 20 64.1 21.5
## 3 64 74.7 85.0
library(mosaic)
splom(FL) # Scatter PLOt Matrix
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3.3 Correlations
• There is significant (p≈ 7 × 10−5) positive correlation (r=0.47) between Crime and Education
• Then there is also significant positive correlation (r=0.68) between Crime and Urbanisation

cor(FL)

## Crime Education Urbanisation
## Crime 1.0000000 0.4669119 0.6773678
## Education 0.4669119 1.0000000 0.7907190
## Urbanisation 0.6773678 0.7907190 1.0000000
cor.test(~ Crime + Education, data = FL)

##
## Pearson's product-moment correlation
##
## data: Crime and Education
## t = 4.2569, df = 65, p-value = 6.806e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2553414 0.6358104
## sample estimates:
## cor
## 0.4669119

3.4 Several predictors
• Both Education (x1) and Urbanisation (x2) are pretty good predictors for Crime (y).
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• We therefore want to consider the model

y = α + β1x1 + β2x2 + ϵ

• The errors ϵ are random noise with mean zero and standard deviation σy|x.
• The graph for the mean response is in other words a 2-dimensional plane in a 3-dimensional space.
• We determine estimates (a, b1, b2) for (α, β1, β2) via the least squares method, i.e deviations from the

plane.

3.5 Example

model <- lm(Crime ~ Education + Urbanisation, data = FL)
summary(model)

##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09

• From the output we find the prediction equation

ŷ = 59 − 0.58x1 + 0.68x2

• Not exactly what we expected based on the correlation.
• Now there appears to be a negative association between y and x1 (Simpsons Paradox)!
• We can also find the standard error (0.4725) and the corresponding t-score (-1.235) for the the slope of

Education
• This yields a p-value of 22%, i.e. the slope is not significantly different from zero.

3.6 Simpsons paradox
• The example illustrates Simpson’s paradox.
• When considered alone Education is a good predictor for Crime (with positive correlation).
• When we add Urbanisation, then Education has a negative effect on Crime (but not significant).
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• A possible explanation is illustrated by the graph above.
– Urbanisation has positive effect on both Education and Crime.
– For a given level of urbanisation there is a (non-significant) negative association between

Education and Crime.
– Viewed alone Education is a good predictor for Crime. If Education has a large value, then this

indicates a large value of Urbanisation and thereby a large value of Crime.

4 The general model
4.1 Regression model

• We have a sample of size n, where we have measured
– the response y.
– k potential predictors x1, x2, . . . , xk.

• Multiple regression model:
y = α + β1x1 + β2x2 + . . . + βkxk + ϵ.

• The errors ϵ are a sample from a population with mean zero and standard deviation σy|x.
• The systematic part of the model, i.e. when all errors are zero, says that the mean response is a

linear function of the predictors:

E(y|x1, x2, . . . , xk) = α + β1x1 + β2x2 + . . . + βkxk

• The symbol E is used here to denote expectation, i.e., mean value.

4.2 Interpretation of parameters
• In the multiple linear regression model

E(y|x1, x2, . . . , xk) = α + β1x1 + β2x2 + . . . + βkxk

– The parameter α is the Intercept, corresponding to the mean response, when all predictors are
equal to zero.

– The parameters (β1, β2, . . . , βk) are called partial regression coefficients.
• Imagine that all predictors but x1 are held fixed. Then y = α̃ + β1x1 is a line with slope β1, which

describes the rate of change in the mean response, when x1 is changed one unit. Here

α̃ = α + β2x2 + · · · + βkxk

is a constant number since we assumed all predictors but x1 was held fixed.
• The rate of change β1 does not depend on the value of the remaining predictors. In this case we say

that there is no interaction between the effects of the predictors on the response.
• The above holds similarly for the other partial regression coefficients.
• An example of a model with interaction is

E(y|x1, x2) = α + β1x1 + β2x2 + β3x1x2 = α + β2x2 + (β1 + β3x2)x1

• When we fix x2 the line has slope β1 + β3x2, which depends on the chosen value of x2.

13



5 Estimation
5.1 Estimation of model

• The estimate (a, b1, b2, . . . , bk) for (α, β1, β2, . . . , βk) is determined by minimizing the sum of squared
errors.

• Based on this estimate we write the prediction equation as

ŷ = a + b1x1 + b2x2 + . . . + bkxk

• The distance between model and data is measured by the sum of squared erros

SSE =
n∑

i=1
e2

i =
n∑

i=1
(yi − ŷi)2.

• We estimate σy|x by the quantity

sy|x =
√

SSE

n − k − 1 .

• Rather than n we divide SSE by the degrees of freedom df = n − k − 1. Theory shows, that this is
reasonable.

• The degrees of freedom df are determined by the sample size minus the number of parameters in the
regression equation.

• Currently we have k + 1 parameters: 1 intercept and k slopes.

6 Multiple R-squared
6.1 Multiple R2

• We want to compare two models to predict the response y. Analogous to simple linear regression we
have the following setup:

• Model 1: We do not use the predictors, and use ȳ to predict any y-measurement. The corresponding
prediction error is

– TSS =
∑n

i=1(yi − ȳ)2 and is called the Total Sum of Squares.
• Model 2: We use the multiple prediction equation to predict y, i.e. the prediction error is

– SSE =
∑n

i=1(yi − ŷi)2 and is called Sum of Squared Errors.
• We then define the multiple coefficient of determination

R2 = TSS − SSE

TSS
.

• Thus, R2 is the relative reduction in prediction error, when we use x1, x2, . . . , xk as explanatory variables.
• It can be shown that the multiple correlation R =

√
R2 is the correlation between y and ŷ.

gf_point(predict(model) ~ FL$Crime) %>%
gf_lm() %>%
gf_labs(title = paste("Correlation between predicted and observed y ( r =", round(sqrt(summary(model)$r.squared),2), ")"),

x = "Crime",
y = expression(hat(y)))
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6.2 Example

summary(model)

##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09

• The prediction equation is ŷ = 59 − 0.58x1 + 0.68x2
• The estimate for σy|x is sy|x = 20.82 (Residual standard error in R) with df = 67 − 3 = 64 degrees

of freedom.
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• Multiple R2 = 0.4714, i.e. 47% of the variation in the response is explained by including the predictors
in the model.

• The estimate b1 = −0.5834 has standard error (Std. Error) se = 0.4725 with corresponding t-score (t
value) tobs = −0.5834

0.4725 = −1.235.
• The hypothesis H0 : β1 = 0 has the t-score tobs = −1.235, which means that b1 isn’t significantly

different from zero, since the p-value (Pr(>|t|)) is 22%. That means that we should exclude Education
as a predictor.

6.3 Example
• Our final model is then a simple linear regression:

model2 <- lm(Crime ~ Urbanisation, data = FL)
summary(model2)

##
## Call:
## lm(formula = Crime ~ Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.766 -16.541 -4.741 16.521 49.632
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.54125 4.53930 5.406 9.85e-07 ***
## Urbanisation 0.56220 0.07573 7.424 3.08e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.9 on 65 degrees of freedom
## Multiple R-squared: 0.4588, Adjusted R-squared: 0.4505
## F-statistic: 55.11 on 1 and 65 DF, p-value: 3.084e-10

• The coefficient of determination always decreases, when the model is simpler. Now we have R2 = 46%,
where before we had 47%. But the decrease is not significant.

7 F-test for effect of predictors
7.1 F-test

• We consider the hypothesis
H0 : β1 = β2 = . . . = βk = 0

against the alternative, that at least one of these are non-zero.
• As test statistic we use

Fobs = (n − k − 1)R2

k(1 − R2)

• Large values of R2 implies large values of F , which points to the alternative hypothesis.
• I.e. when we have calculated the observed value Fobs, then we have to find the probability that a new

experiment would result in a larger value.
• It can be shown that the reference distribution is (can be approximated by) a so-called F-distribution

with degrees of freedom df1 = k and df2 = n − k − 1.
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7.2 Example
• We return to Crime and the prediction equation ŷ = 59−0.58x1 +0.68x2, where n = 67 and R2 = 0.4714.

We have
– df1 = k = 2 since we have 2 predictors.
– df2 = n − k − 1 = 67 − 2 − 1 = 64.
– Then we can calculate Fobs = (n−k−1)R2

k(1−R2) = 28.54
• To evaluate the value 28.54 in the relevant F-distribution:

1 - pdist("f", 28.54, df1=2, df2=64)
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## [1] 1.378612e-09

• So p-value=1.38 × 10−9 (notice we don’t multiply by 2 since this is a one-sided test; only large values
point more towards the alternative than the null hypothesis).

• All this can be found in the summary output we already have:
summary(model)

##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
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## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09

8 Test for interaction
8.1 Interaction between effects of predictors

• Could it be possible that a combination of Education and Urbanisation is good for prediction? We
want to investigate this using the model

E(y|x1, x2) = α + β1x1 + β2x2 + β3x1x2,

where we have extended with a possible effect of the product x1x2:
model3 <- lm(Crime ~ Education * Urbanisation, data = FL)
summary(model3)

##
## Call:
## lm(formula = Crime ~ Education * Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35.181 -15.207 -6.457 14.559 49.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.31754 49.95871 0.387 0.700
## Education 0.03396 0.79381 0.043 0.966
## Urbanisation 1.51431 0.86809 1.744 0.086 .
## Education:Urbanisation -0.01205 0.01245 -0.968 0.337
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.83 on 63 degrees of freedom
## Multiple R-squared: 0.4792, Adjusted R-squared: 0.4544
## F-statistic: 19.32 on 3 and 63 DF, p-value: 5.371e-09

• When we look at the p-values in the table nothing is significant at the 5% level!
• But the F-statistic tells us that the predictors collectively have a significant prediction ability.
• Why has the highly significant effect of x2 disappeared? Because the predictors x1 and x1x2 are able to

explain the same as x2.
• Previously we only had x1 as alternative explanation to x2 - and that wasn’t enough.
• The phenomenon is called multicollinearity and illustrates that we can have different models with

equally good predictive properties.
• In this case we will choose the model with x2 since it is simpler.
• However, in general it can be difficult to choose between models. For example, if both height and weight

are good predictors of some response, but one of them can be left out, which one do we choose?

18


	The regression problem
	We want to predict
	Initial graphics
	Simple linear regression
	Model for linear regression
	Least squares
	The prediction equation and residuals
	Estimation of conditional standard deviation
	Example in R
	Test for independence
	Example
	Confidence interval for slope
	Correlation

	R-squared: Reduction in prediction error
	R-squared: Reduction in prediction error
	Graphical illustration of sums of squares
	r^2: Reduction in prediction error

	Multiple regression model
	Multiple regression model
	Example
	Correlations
	Several predictors
	Example
	Simpsons paradox

	The general model
	Regression model
	Interpretation of parameters

	Estimation
	Estimation of model

	Multiple R-squared
	Multiple R^2
	Example
	Example

	F-test for effect of predictors
	F-test
	Example

	Test for interaction
	Interaction between effects of predictors


