

FIGURE 11.13

TABLE 11.13

BIVARIATE	Coef.	Std. Err.	t	P> t
income	2.609	0.675	3.866	0.0003
_cons	-11.526	16.834	-0.685	0.4960
MULTIPLE	Coef.	Std. Err.	t	P> t
income	-0.809	0.805	-1.005	0.3189
urban	0.646	0.111	5.811	0.0001
_cons	40.261	16.365	2.460	0.0166

- (c) Find R^2 for the multiple regression model, and show that it is not much larger than r^2 for the model using urbanization alone as the predictor. Interpret.
- **11.9.** Recent UN data from several nations on y = crude birth rate (number of births per 1000 population size), $x_1 = \text{women's}$ economic activity (female labor force as percentage of male), and $x_2 = \text{GNP}$ (per capita, in thousands of dollars) has prediction equation $\hat{y} = 34.53 0.13x_1 0.64x_2$. The bivariate prediction equation with x_1 is $\hat{y} = 37.65 0.31x_1$. The correlations are $r_{yx_1} = -0.58$, $r_{yx_2} = -0.72$, and $r_{x_1x_2} = 0.58$. Explain why the coefficient of x_1 in the bivariate equation is quite different from that in the multiple predictor equation.
- **11.10.** For recent UN data for several nations, a regression of carbon dioxide use $(CO_2, a \text{ measure of air pollution})$ on gross domestic product (GDP) has a correlation of 0.786. With life expectancy as a second explanatory variable, the multiple correlation is 0.787.
- (a) Explain how to interpret the multiple correlation.
- **(b)** For predicting CO_2 , did it help much to add life expectancy to the model? Does this mean that life expectancy is very weakly correlated with CO_2 ? Explain.

- 11.11 Table 11.14 shows Stata output from fitting the multiple regression model to recent statewide data, excluding D.C., on $y = \text{violent crime rate (per } 100,000 \text{ people)}, x_1 = \text{poverty rate (percentage with income below the poverty level)}, and <math>x_2 = \text{percentage living in urban areas}.$
- (a) Report the prediction equation.
- **(b)** Massachusetts had y = 805, $x_1 = 10.7$, and $x_2 = 96.2$. Find its predicted violent crime rate. Find the residual, and interpret.
- (c) Interpret the fit by showing the prediction equation relating \hat{y} and x_1 for states with (i) $x_2 = 0$, (ii) $x_2 = 100$. Interpret.
- (d) Interpret the correlation matrix.
- (e) Report R^2 and the multiple correlation, and interpret.
- 11.12. Refer to the previous exercise.
- (a) Report the F statistic for testing H_0 : $\beta_1 = \beta_2 = 0$, report its df values and P-value, and interpret.
- **(b)** Show how to construct the t statistic for testing H_0 : $\beta_1 = 0$, report its df and P-value for H_a : $\beta_1 \neq 0$, and interpret.

variction

th x_1 o (c). and eems

te to

lots and

with

efter-

- (d) Explain how the F-value can be obtained from the R^2 -value reported. Report its df values, and explain how to interpret its result.
- (e) The estimated standardized regression coefficients are -0.79 for ideology and -0.23 for religion. Interpret.

TABLE 11.17

Variable	Coefficient	Std. Error
Intercept	135.31	id to date
Ideology	-14.07	3.16**
Religion	-2.95	2.26
F	13.93**	2.20
R^2	0.799	
Adj. R ²	0.742	
n	10	

- **11.16.** Refer to Table 11.5 on page 328. Test H_0 : $\beta_2 = 0$ that mental impairment is independent of SES, controlling for life events. Report the test statistic, and report and interpret the *P*-value for (a) H_a : $\beta_2 \neq 0$, (b) H_a : $\beta_2 < 0$.
- 11.17. For a random sample of 66 state precincts, data are available on y = percentage of adult residents who are registered to vote, $x_1 =$ percentage of adult residents owning homes, $x_2 =$ percentage of adult residents who are nonwhite, $x_3 =$ median family income (thousands of dollars), $x_4 =$ median age of residents, $x_5 =$ percentage of residents who have lived in the precinct for at least 10 years. Table 11.18 shows some output used to analyze the data.
- (a) Fill in all the missing values.

closes

shows

feet-

allors.

5 =

- **(b)** Do you think it is necessary to include all five explanatory variables in the model? Explain.
- (c) To what test does "F value" refer? Interpret the result of that test.
- (d) To what test does the t-value opposite x1 refer? Interpret the result of that test.

- 11.18. Refer to the previous exercise. Find a 95% confidence interval for the change in the mean of y for a (a) 1-unit increase, (b) 50-unit increase in the percentage of adults owning homes, controlling for the other variables. Interpret.
- **11.19.** Use software with the Houses data file at the text website to conduct a multiple regression analysis of y = selling price of home (dollars), $x_1 =$ size of home (square feet), $x_2 =$ number of bedrooms, $x_3 =$ number of bathrooms.
- (a) Use scatterplots to display the effects of the explanatory variables on y. Explain how the highly discrete nature of x_2 and x_3 affects the plots.
- **(b)** Report the prediction equation and interpret the estimated partial effect of size of home.
- (c) Inspect the correlation matrix, and report the variable having the (i) strongest association with y, (ii) weakest association with y.
- (d) Report R^2 for this model and r^2 for the simpler model using x_1 alone as the explanatory variable. Interpret.
- 11.20. Refer to the previous exercise.
- (a) Test the partial effect of number of bathrooms, and interpret.
- **(b)** Find the partial correlation between selling price and number of bathrooms, controlling for number of bedrooms. Compare it to the correlation, and interpret.
- (c) Find the estimated standardized regression coefficients for the model, and interpret.
- (d) Write the prediction equation using standardized variables. Interpret.
- **11.21.** Exercise 11.11 showed a regression analysis for statewide data on y = violent crime rate, $x_1 =$ poverty rate, and $x_2 =$ percentage living in urban areas. When we add an interaction term, we get $\hat{y} = 158.9 14.72x_1 1.29x_2 + 0.76x_1x_2$.

TABLE 11.18

Regression Residual Total	Sum of Squares	DF	Mean Square	F	Sig	R-Square
	2940.0					
	3753.3		115.05			Root MSI
Variable Intercept	Parameter Estimate 70.0000		Standard Error	55 46 90 1t 16	S	ig
x1 x2	0.1000 -0.1500		0.0450 0.0750	1907-416	isbns t	-
x3 x4	0.1000 -0.0400		0.2000	F20	E/T 42.	
x5	0.1200		0.0500 0.0500	057920	AVE. 9	- 1773

- (a) As the percentage living in urban areas increases, does the effect of poverty rate tend to increase or decrease? Explain.
- (b) Show how to interpret the prediction equation, by finding how it simplifies when $x_2 = 0, 50$, and 100.
- 11.22. A study analyzes relationships among y = percentage of registered voters who are Democrats, and $x_2 = \text{percentage}$ of registered voters who vote in the election, for several congressional elections in 2016. The researchers expect interaction, since they expect a higher slope between y and x_1 at larger values of x_2 than at smaller values. They obtain the prediction equation $\hat{y} = 20 + 0.30x_1 + 0.05x_2 + 0.005x_1x_2$. Does this equation support the direction of their prediction? Explain.
- 11.23. Use software with the Houses data file to allow interaction between number of bedrooms and number of bathrooms in their effects on selling price.
- (a) Interpret the fit by showing the prediction equation relating \hat{y} and number of bedrooms for homes with (i) two bathrooms, (ii) three bathrooms.
- (b) Test the significance of the interaction term. Interpret.
- **11.24.** A multiple regression analysis investigates the relationship between y = college GPA and several explanatory variables, using a random sample of 195 students at

Slippery Rock University. First, high school GPA and total SAT score are entered into the model. The sum of squared errors is SSE = 20. Next, parents' education and parents' income are added, to determine if they have an effect, controlling for high school GPA and SAT. For this expanded model, SSE = 19. Test whether this complete model is significantly better than the one containing only high school GPA and SAT. Report and interpret the P-value.

March .

120

1000

Cho. Tax

DOM: N

(c) 50

SITE THE

200 100

(d) lim

a New In

(e) Fin

standar

variable

11.27. F

(page 3

crime ra

(includi

III.28. F (with se for y = scored

Republi years of year (12 also reli liberal) i 1 = extr model 4. (a) Sumi (b) The changes

- **11.25.** Table 11.19 shows results of regressing y = birth rate (number of births per 1000 population) on $x_1 = \text{women's economic activity and } x_2 = \text{literacy rate, using UN data for 23 nations.}$
- (a) Report the value of each of the following:

(i) r_{yx_y} (ii) r_{yx_y} (iii) R^2 , (v) SSE, (vi) m

iv) TSS, (v) SSE, (vi) mean square error,

(vii) s, (viii) s_y , (ix) se for b_1 ,

(x) $t \text{ for } H_0: \beta_1 = 0,$

(xi) P for H_0 : $\beta_1 = 0$ against H_a : $\beta_1 \neq 0$,

(xii) P for H_0 : $\beta_1 = 0$ against H_a : $\beta_1 < 0$,

(xiii) F for H_0 : $\beta_1 = \beta_2 = 0$,

(xiv) $P \text{ for } H_0: \beta_1 = \beta_2 = 0.$

- **(b)** Report the prediction equation, and interpret the signs of the estimated regression coefficients.
- (c) Interpret the correlations r_{yx_1} and r_{yx_2} .
- (d) Report R^2 , and interpret its value.

TABLE 11.19

	kain = ===	1617			2.45	DV SILISS
	Mean	Std Devi	ation N	e de la su		
BIRTHS	22.11					
ECON	47.82					
LITERA	CY 77.69					
			Correlatio	ns		
million's line			THS	ECON	is to the p	ITER
Correlation	B)	BIRTHS 1.00000		-0.61181		
	EC	-0.6	1181	1.00000		42056
	L)	LITERACY -0.81872			1.00000	
	Sum of	Lattine within your				
Regression Residual Total	Square	DF Me 9 2 4 20	an Square 912.985 29.271	F 31.191	Sig 0.0001	
Root MSE	(Std. Err	or of the Es	timate) 5	.410	R Square	0.7572
	Unstandar	dized Coeff.	Standard	ized		
	В	Std. Error	Coeff. (E		t	Cia
(Constant)	61.713	5.2453				Sig 0.0001
ECON	-0.171	0.0640	-0.325			0.0145
LITERACY	-0.404	0.0720	-0.682			0.00143