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1 The regression problem
1.1 We want to predict

• We will study the dataset trees, which is on the course website (and actually also already available in
R).

trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")

• In this experiment we have measurements of 3 variables for 31 randomly chosen trees:
• [,1] Girth numeric. Tree diameter in inches.
• [,2] Height numeric. Height in ft.
• [,3] Volume numeric. Volume of timber in cubic ft.
• We want to predict the tree volume, if we measure the tree height and/or the tree girth (diameter).
• This type of problem is called regression.
• Relevant terminology:

– We measure a quantitative response y, e.g. Volume.
– In connection with the response value y we also measure one (later we will consider several)

potential explanatory variable x. Another name for the explanatory variable is predictor.

1.2 Initial graphics
• Any analysis starts with relevant graphics.
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library(mosaic)
library(GGally)
ggscatmat(trees) # Scatter plot matrix from GGally package
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• For each combination of the variables we plot the (x, y) values.
• It looks like Girth is a good predictor for Volume.
• If we only are interested in the association between two (and not three or more) variables we use the

usual gf_point function.

1.3 Simple linear regression
• We choose to use x=Girth as predictor for y=Volume. When we only use one predictor we are doing

simple regression.
• The simplest model to describe an association between response y and a predictor x is simple

linear regression.
• I.e. ideally we see the picture

y(x) = α + βx

where
– α is called the Intercept - the line’s intercept with the y-axis, corresponding to the response for

x = 0.
– β is called Slope - the line’s slope, corresponding to the change in response, when we increase the

predictor by one unit.
gf_point(Volume ~ Girth, data = trees) %>% gf_lm()
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1.4 Model for linear regression
• Assume we have a sample with joint measurements (x, y) of predictor and response.
• Ideally the model states that

y(x) = α + βx,

but due to random variation there are deviations from the line.
• What we observe can then be described by

y = α + βx + ε,

where ε is a random error, which causes deviations from the line.
• We will continue under the following fundamental assumption:

– The errors ε are normally distributed with mean zero and standard deviation σy|x.
• We call σy|x the conditional standard deviation given x, since it describes the variation in y around

the regression line, when we know x.

1.5 Least squares
• In summary, we have a model with 3 parameters:

– (α, β) which determine the line
– σy|x which is the standard deviation of the deviations from the line.

• How are these estimated, when we have a sample (x1, y1) . . . (xn, yn) of (x, y) values??
• To do this we focus on the errors

εi = yi − α − βxi

which should be as close to 0 as possible in order to fit the data best possible.
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• We will choose the line, which minimizes the sum of squares of the errors:
n∑

i=1
ε2

i =
n∑

i=1
(yi − α − βxi)2.

• If we set the partial derivatives to zero we obtain two linear equations for the unknowns (α, β), where
the solution (a, b) is given by:

b =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 and a = ȳ − bx̄

1.6 The prediction equation and residuals
• The equation for the estimates (α̂, β̂) = (a, b),

ŷ = a + bx

is called the prediction equation, since it can be used to predict y for any value of x.
• Note: The prediction equation is determined by the current sample. I.e. there is an uncertainty attached

to it. A new sample would without any doubt give a different prediction equation.
• Our best estimate of the errors is

ei = yi − ŷ = yi − a − bxi,

i.e. the vertical deviations from the prediction line.
• These quantities are called residuals.
• We have that

– The prediction line passes through the point (x̄, ȳ).
– The sum of the residuals is zero.

1.7 Estimation of conditional standard deviation
• To estimate σy|x we need Sum of Squared Errors

SSE =
n∑

i=1
e2

i =
n∑

i=1
(yi − ŷi)2,

which is the squared distance between the model and data.

• We then estimate σy|x by the quantity

sy|x =
√

SSE

n − 2

• Instead of n we divide SSE with the degrees of freedom df = n − 2. Theory shows, that this is
reasonable.

• The degrees of freedom df are determined as the sample size minus the number of parameters in the
regression equation.

• In the current setup we have 2 parameters: (α, β).

1.8 Example in R

model <- lm(Volume ~ Girth, data = trees)
summary(model)
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##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

• The estimated residuals vary from -8.065 to 9.578 with median 0.152.
• The estimate of Intercept is a = −36.9435
• The estimate of slope of Girth is b = 5.0659
• The estimate of the conditional standard deviation (called residual standard error in R) is sy|x = 4.252

with 31 − 2 = 29 degrees of freedom.

1.9 Test for independence
• We consider the regression model

y = α + βx + ε

where we use a sample to obtain estimates (a, b) of (α, β), an estimate sy|x of σy|x and the degrees of
freedom df = n − 2.

• We are going to test
H0 : β = 0 against Ha : β ̸= 0

• The null hypothesis specifies, that y doesn’t depend linearly on x.
• In other words the question is: Is the value of b far away from zero?
• It can be shown that b has standard error

seb =
sy|x√∑n

i=1(xi − x̄)2

with df degrees of freedom.
• So, we want to use the test statistic

tobs = b

seb

which has to be evaluated in a t-distribution with df degrees of freedom.

1.10 Example
• Recall the summary of our example:

summary(model)

##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

• As we noted previously b = 5.0659 and sy|x = 4.252 with df = 29 degrees of freedom.
• In the second column(Std. Error) of the Coefficients table we find seb = 0.2474.
• The observed t-score (test statistic) is then

tobs = b

seb
= 5.0659

0.2474 = 20.48

which also can be found in the third column(t value).
• The corresponding p-value is found in the usual way by using the t-distribution with 29 degrees of

freedom.
• In the fourth column(Pr(>|t|)) we see that the p-value is less than 2 × 10−16. This is no surprise since

the t-score was way above 3.

1.11 Confidence interval for slope
• When we have both the standard error and the reference distribution, we can construct a confidence

interval in the usual way:
b ± tcritseb,

where the t-score is determined by the confidence level and we find this value using qdist in R.

• In our example we have 29 degrees of freedom and with a confidence level of 95% we get tcrit =
qdist("t", 0.975, df = 29)= 2.045.

• If you are lazy (like most statisticians are):
confint(model)

## 2.5 % 97.5 %
## (Intercept) -43.825953 -30.060965
## Girth 4.559914 5.571799

• i.e. (4.56, 5.57) is a 95% confidence interval for the slope of Girth.

1.12 Correlation
• The estimated slope b in a linear regression doesn’t say anything about the strength of association

between y and x.
• Girth was measured in inches, but if we rather measured it in kilometers the slope is much larger: An

increase of 1km in Girth yield an enormous increase in Volume.
• Let sy and sx denote the sample standard deviation of y and x, respectively.
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• The corresponding t-scores
yt = y

sy
and xt = x

sx

are independent of the chosen measurement scale.
• The corresponding prediction equation is then

ŷt = a

sy
+ sx

sy
bxt

• i.e. the standardized regression coefficient (slope) is

r = sx

sy
b

which also is called the correlation between y and x.

• It can be shown that:
– −1 ≤ r ≤ 1
– The absolute value of r measures the (linear) strength of dependence between y and x.
– When r = 1 all the points are on the prediction line, which has positive slope.
– When r = −1 all the points are on the prediction line, which has negative slope.

• To calculate the correlation in R:
cor(trees)

## Girth Height Volume
## Girth 1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000

• There is a strong positive correlation between Volume and Girth (r=0.967).
• Note, calling cor on a data.frame (like trees) only works when all columns are numeric. Otherwise

the relevant numeric columns should be extracted like this:
cor(trees[,c("Height", "Girth", "Volume")])

which produces the same output as above.

• Alternatively, one can calculate the correlation between two variables of interest like:
cor(trees$Height, trees$Volume)

## [1] 0.5982497

2 R-squared: Reduction in prediction error
2.1 R-squared: Reduction in prediction error

• We want to compare two different models used to predict the response y.
• Model 1: We do not use the knowledge of x, and use ȳ to predict any y-measurement. The corresponding

prediction error is defined as

TSS =
n∑

i=1
(yi − ȳ)2

and is called the Total Sum of Squares.
• Model 2: We use the prediction equation ŷ = a + bx to predict yi. The corresponding prediction error

is then the Sum of Squared Errors

SSE =
n∑

i=1
(yi − ŷi)2.
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• We then define
r2 = TSS − SSE

TSS

which can be interpreted as the relative reduction in the prediction error, when we include x as
explanatory variable.

• This is also called the fraction of explained variation, coefficient of determination or simply
r-squared.

• For example if r2 = 0.65, the interpretation is that x explains about 65% of the variation in y, whereas
the rest is due to other sources of random variation.

2.2 Graphical illustration of sums of squares
## `geom_smooth()` using formula = 'y ~ x'
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Prediction rule 2

• Note the data points are the same in both plots. Only the prediction rule changes.
• The error of using Rule 1 is the total sum of squares E1 = TSS =

∑n
i=1(yi − ȳ)2.

• The error of using Rule 2 is the residual sum of squares (sum of squared errors) E2 = SSE =∑n
i=1(yi − ŷi)2.

2.3 r2: Reduction in prediction error
• For the simple linear regression we have that

r2 = TSS − SSE

TSS

is equal to the square of the correlation between y and x, so it makes sense to denote it r2.
• Towards the bottom of the output below we can read off the value r2 = 0.9353 = 93.53%, which is a

large fraction of explained variation.
summary(model)

##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
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