Comparison of two groups
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0.1 Response variable and explanatory variable
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e We conduct an experiment, where we at random choose 50 IT-companies and 50 service companies and

measure their profit ratio. Is there association between company type (IT/service) and profit ratio?

e In other words we compare samples from 2 different populations. For each company we register:

— The binary variable company type, which is called the explanatory variable and divides data

in 2 groups.
— The quantitative variable profit ratio, which is called the response variable.

0.2 Dependent/independent samples

e In the example with profit ratio of 50 IT-companies and 50 service companies we have independent

samples, since the same company cannot be in both groups.

e Now, think of another type of experiment, where we at random choose 50 IT-companies and measure
their profit ratio in both 2009 and 2010. Then we may be interested in whether there is association

between year and profit ratio?
e In this example we have dependent samples, since the same company is in both groups.
e Dependent samples may also be referred to as paired samples.

0.3 Comparison of two means (Independent samples)

e We consider the situation, where we have two quantitative samples:
— Population 1 has mean p, which is estimated by ji; = y; based on a sample of size n;.
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— Population 2 has mean po, which is estimated by [io = ¥ based on a sample of size no.
— We are interested in the difference po — 1, which is estimated by d = g2 — 1.
— Assume that we can find the estimated standard error se; of the difference and that this has
degrees of freedom df.
— Assume that the samples either are large or come from a normal population.
Then we can construct a
— confidence interval for the unknown population difference of means ps — 1 by

(332 - gl) =+ teritSed,

where the critical t-score, t.;;, determines the confidence level.
— significance test:

* for the null hypothesis Hy : p2 — pup = 0 and alternative hypothesis H, : o — pup # 0.
_ (2—=41)-0

prym— that has to be evaluated in a t-distribution with

* which uses the test statistic: t,ps
df degrees of freedom.

Comparison of two means (Independent samples)

In the independent samples situation it can be shown that

seq = \/sef + se%,

where se; and ses are estimated standard errors for the sample means in populations 1 and 2, respectively.

We recall, that for these we have se = ==, i.e.
vn

2 2
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seq =4 — + —=,
ni n2

where s; and s are estimated standard deviations for population 1 and 2, respectively.
The degrees of freedom df for se; can be estimated by a complicated formula, which we will not
present here.
For the confidence interval and the significance test we note that:
— If both n; and ng are above 30, then we can use the standard normal distribution (z-score) rather
than the t-distribution (¢-score).
— If ny or ng are below 30, then we let R calculate the degrees of freedom and p-value/confidence
interval.

Example: Comparing two means (independent samples)

We return to the Chile data. We study the association between the variables sex and statusquo (scale
of support for the status-quo). So, we will perform a significance test to test for difference in the mean of
statusquo for male and females.

Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
library(mosaic)
fv <- favstats(statusquo ~ sex, data = Chile)

fv

##

## 1
## 2

sex min Q1 median Q3 max mean sd n missing
F -1.80 -0.975 0.121 1.033 2.02 0.0657 1.003 1368 11
M -1.74 -1.032 -0.216 0.861 2.05 -0.0684 0.993 1315 6

o Difference: d = 0.0657 — (—0.0684) = 0.1341.
o Estimated standard deviations: s; = 1.0032 (females) and sy = 0.9928 (males).
e Sample sizes: n; = 1368 and ny, = 1315.

.2 .2
« Estimated standard error of difference: sey = \/;—11 + 22 = \/1'10563822 + 0'?512582 = 0.0385.

n2



e Observed t-score for Hy: 1 — po = 01is:  tops = i;o = 8:%2‘8% = 3.4786.
o Since both sample sizes are “pretty large” (> 30), we can use the z-score instead of the ¢-score for

finding the p-value (i.e. we use the standard normal distribution):

1 - pdist("norm", q = 3.4786, xlim = c(-4, 4))

0.4-
0.3-
> probability
@ go- B ~:1.000
[¢D)
© B:0.000
0.1-
0.0-

-4 -2 0 2 4
## [1] 0.0002520202

e Then the p-value is 2 - 0.00025 = 0.0005, so we reject the null hypothesis.
o We can leave all the calculations to R by using t.test:

t.test(statusquo ~ sex, data = Chile)

#i#

## Welch Two Sample t-test

#it

## data: statusquo by sex

# t = 3.4786, df = 2678.7, p-value = 0.0005121
## alternative hypothesis: true difference in means between group F and group M is not equal to O
## 95 percent confidence interval:

## 0.05849179 0.20962982

## sample estimates:

## mean in group F mean in group M

## 0.06570627 -0.06835453

e We recognize the t-score 3.4786 and the p-value 0.0005. The estimated degrees of freedom df = 2679 is
so large that we can not tell the difference between results obtained using z-score and t-score.

0.6 Comparison of two means: confidence interval (independent samples)

e We have already found all the ingredients to construct a confidence interval for ps — pq:
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— d = Y9 — y; estimates po — p1.

2 2
— seq =1/ :—11 + Z—z estimates the standard error of d.

Then:
d=+ teritSed

is a confidence interval for pg — p1.
The critical t-score, t.;; is chosen corresponding to the wanted confidence level. If ny and ny both are
greater than 30, then t..;; = 2 yields a confidence level of approximately 95%.

Comparison of two means: paired t-test (dependent samples)

Experiment:

— You choose 32 students at random and measure their average reaction time in a driving simulator

while they are listening to radio or audio books.

— Later the same 32 students redo the simulated driving while talking on a cell phone.
It is interesting to investigate whether or not the fact that you are actively participating in a conversation
changes your average reaction time compared to when you are passively listening.
So we have 2 samples corresponding to with/without phone. In this case we have dependent samples,
since we have 2 measurement for each student.
We use the following strategy for analysis:

— For each student calculate the change in average reaction time with and without talking on the

phone.
— The changes dy,ds, . .., dss are now considered as ONE sample from a population with mean pu.
— Test the hypothesis Hy : ¢ = 0 as usual (using a t-test for testing the mean as in the previous
lecture).

0.7.1 Reaction time example

Data is organized in a data frame with 3 variables:
— student (integer — a simple id)
— reaction_time (numeric — average reaction time in milliseconds)
— phone (factor — yes/no indicating whether speaking on the phone)

reaction <- read.delim("https://asta.math.aau.dk/datasets?file=reaction.txt")
head(reaction, n = 3)

## student reaction_time phone
## 1 1 604 no
## 2 2 556 no
## 3 3 540 no

Instead of doing manual calculations we let R perform the significance test (using t.test with paired =

TRUE as our samples are paired/dependent):

llyesn)
"no"

yes <- subset(reaction, phone
no <- subset(reaction, phone ==
all(yes$student == no$student)

## [1] TRUE

reaction_paired <- data.frame(student =

no$student, yes = yes$reaction_time, no

t.test(reaction_paired$no, reaction_paired$yes, paired = TRUE)

##
## Paired t-test
#it

no$reaction_time)



## data: reaction_paired$no and reaction_paired$yes

## t = -5.4563, df = 31, p-value = 5.803e-06

## alternative hypothesis: true mean difference is not equal to O
## 95 percent confidence interval:

## -69.54814 -31.70186

## sample estimates:

## mean difference

## -50.625

e With a p-value of 0.0000058 we reject that speaking on the phone has no influence on the reaction time.

o To understand what is going on, we can manually find the reaction time difference for each student and
do a one sample t-test on this difference:

reaction_paired$diff <- reaction_paired$yes - reaction_paired$no
head(reaction_paired)

##  student yes no diff

## 1 1 636 604 32
## 2 2 623 556 67
## 3 3 615 540 75
## 4 4 672 522 150
## 5 5 601 459 142
## 6 6 600 544 56

t.test( ~ diff, data = reaction_paired)

#i#

## One Sample t-test

#it

## data: diff

## t = 5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean is not equal to O
## 95 percent confidence interval:

## 31.70186 69.54814

## sample estimates:

## mean of x

#i# 50.625

1 Comparison of two proportions

1.1 Comparison of two proportions

e We consider the situation, where we have two qualitative samples and we investigate whether a given
property is present or not:
— Let the proportion of population 1 which has the property be 71, which is estimated by 7; based
on a sample of size ny.
— Let the proportion of population 2 which has the property be 7o, which is estimated by 72 based
on a sample of size ns.
— We are interested in the difference w9 — w1, which is estimated by d = 72 — 71.
— Assume that we can find the estimated standard error se, of the difference.
e Then we can construct
— an approximate confidence interval for the difference, mo — 7.
— a significance test.



1.2 Comparison of two proportions: Independent samples

e In the situation where we have independent samples we know that

seq = \/se? + se3,

where se; and ses are the estimated standard errors for the sample proportion in population 1 and 2,

respectively.
e We recall, that these are given by se = ﬁ(ln_ﬁ), ie.
~(1—4 - (1—2
Sed:\//ﬂl( 7T1) +7T2( 7T2).
ni1 No

o A (approximate) confidence interval for mo — 71 is obtained by the usual construction:

(g — 1) £ ZeritSed,

where the critical z-score determines the confidence level.

1.3 Approximate test for comparing two proportions (independent samples)

o We consider the null hypothesis Hy: 7 = my (equivalently Hy : mp — mo = 0) and the alternative
hypothesis H,: w1 # ms.
e Assuming Hj is true, we have a common proportion 7, which is estimated by

n L + nafo
ny + no

’f[‘:

i.e. we aggregate the populations and calculate the relative frequency of the property (with other words:
we estimate the proportion, 7, as if the two samples were one).
o Rather than using the estimated standard error of the difference from previous, we use the following

that holds under Hy:
1 1
sep = \/fr(l —7) ( + )
ny na

o The observed test statistic/z-score for Hy is then:

(e —71)—0
Zobs = )
S€p

which is evaluated in the standard normal distribution.
e The p-value is calculated in the usual way.

~

WARNING: The approximation is only good, when ni7, ni(l — #), naf, na(1 — @) all are greater than 5.

1.4 Example: Approximate confidence interval and test for comparing propor-
tions

We return to the Chile dataset. We make a new binary variable indicating whether the person intends to
vote no or something else (and we remember to tell R that it should think of this as a grouping variable,
i.e. a factor):

Chile$voteNo <- relevel(factor(Chile$vote == "N"), ref = "TRUE")

We study the association between the variables sex and voteNo:



tab <- tally( ~ sex + voteNo, data = Chile, useNA = "no")
tab

## voteNo

## sex TRUE FALSE
## F 363 946
## M 526 697

This gives us all the ingredients needed in the hypothesis test:

« FEstimated proportion of men that vote no: 71; = 522% = 0.430
« Estimated proportion of women that vote no: s = ﬁ =0.277

1.5 Example: Approximate confidence interval (cont.)

o Estimated difference:

d =1y — 71 =0.277 — 0.430 = —0.153

¢ Standard error of difference:

N e

ni n2

B \/ 0.430(1 — 0.430)  0.277(1 — 0.277)

= 0.0188.
1223 * 1309 0-0188
o Approximate 95% confidence interval for difference:
d+1.96-seq = (—0.190, —0.116).
1.6 Example: p-value (cont.)
e Estimated common proportion:
. _ 12230430 +1309x 0.277 _ 5264363 _ .
N 1309 + 1223 © 1309+ 1223 T

e Standard error of difference when Hy : w1 = my is true:

. (1 1
seg = \/w(l —7) ( + ) = 0.0190.
ni1 no

o The observed test statistic/z-score:

d
Zobs = — = —8.06.
S€Q

e The test for Hy against H, : m; # 7o yields a p-value that is practically zero, i.e. we can reject that the
proportions are equal.

1.7 Automatic calculation in R

Chile2 <- subset(Chile, !is.na(voteNo))
prop.test(voteNo ~ sex, data = Chile2, correct = FALSE)

#i#
## 2-sample test for equality of proportions without continuity correction
#i#



##
##
##
##
##
##
##
##

data: tally(voteNo ~ sex)
X-squared = 64.777, df = 1, p-value = 8.389e-16
alternative hypothesis: two.sided
95 percent confidence interval:
-0.1896305 -0.1159275
sample estimates:
prop 1 prop 2
0.2773109 0.4300899

1.8 Fisher’s exact test

o If ni7t, mi(1 — @), noft, na(1 — #) are not all greater than 5, then the approximate test cannot be
trusted. Instead you can use Fisher’s exact test:

fisher.test (tab)

##
##
##
##
##
##
##
##
##
##
##

Fisher's Exact Test for Count Data

data: tab
p-value = 1.04e-15
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.4292768 0.6021525
sample estimates:
odds ratio
0.5085996

e Again the p-value is seen to be extremely small, so we definitely reject the null hypothesis of equal
voteNo proportions for women and men.



1.9 Agresti: Overview of comparison of two groups

TABLE 7.10: Summary of Comparison Methods for Two Groups, for Independent
Random Samples

Type of Response Variable

Categorical Quantitative
Estimation
1. Parameter Ty — M L2 — M1
2. Point estimate ™ — Yo — V1
5 % ) % 2 2
3. Standard error se = |ml=m) | m(1-7) se=.[1 + 2
n np ni np
4. Confidence interval (my — 1) £ z(se) (2 — y1) % t(se)
Significance testing
1. Assumptions Randomization Randomization
=10 observations in each Normal population dist.’s
category, for each group (robust, especially for large n’s)
2. Hypotheses Hy: 71 = mp Ho: p1 = w2
(m — 7 =0) (k2 — p1 =0)
5 55 T # m H; M1 ¢_M2
3. Test statistic z= WT:ZL t= Xzs—-e}—'l
0
4. P-value Two-tail probability from standard normal or ¢

‘(Use one tail for one-sided alternative)
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