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1 Contingency tables

1.1 A contingency table

e We return to the dataset popularKids, where we study association between 2 factors: Goals and
Urban.Rural.

o Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).

import pandas as pd

popKids = pd.read_csv("https://asta.math.aau.dk/datasets?file=PopularKids.dat", sep="\t")
popKids = popKids.rename(columns={'Urban/Rural': 'Urban.Rural'})

tab_totals = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'], margins=True)
tab_totals

## Goals Grades Popular Sports All
## Urban.Rural

## Rural 57 50 42 149
## Suburban 87 42 22 151
## Urban 103 49 26 178
## All 247 141 90 478

1.1.1 A conditional distribution

e Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural,
i.e. the sum in each row of the table is 100 (up to rounding):

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'], margins=False)
tab_pct = (tab.div(tab.sum(axis=1), axis=0) * 100)

tab_pct['All'] = tab_pct.sum(axis=1)

tab_pct.round ()

## Goals Grades Popular Sports All
## Urban.Rural

## Rural 38.0 34.0 28.0 100.0
## Suburban 58.0 28.0 15.0 100.0
## Urban 58.0 28.0 15.0 100.0

e Here we will talk about the conditional distribution of Goals given Urban.Rural.
e An important question could be:
— Are the goals of the kids different when they come from urban, suburban or rural areas? l.e. are
the rows in the table significantly different?
o There is (almost) no difference between urban and suburban, but it looks like rural is different.



2 Independence

2.1 Independence

e Recall, that two factors are independent, when there is no difference between the population’s
distributions of one factor given the levels of the other factor.

e Otherwise the factors are said to be dependent.

e If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals

## Urban.Rural Grades Popular Sports
## Rural 500 300 200
## Suburban 500 300 200
## Urban 500 300 200

e Then the factors Goals and Urban.Rural are independent.

e We take a sample and “measure” the factors F} and F5. E.g. Goals and Urban.Rural for a random
child.

e The hypothesis of interest today is:

Hy : Fy and F5 are independent, H, : F} and F> are dependent.

2.2 The Chi-squared test for independence

e The relative frequencies in the sample gives an estimate of the unconditional distribution of Goals:

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
n = tab.values.sum()
pctGoals = (tab.sum(axis=0) / n * 100).round(1)

pctGoals
## Goals
## Grades 51.7
## Popular 29.5
## Sports 18.8

## dtype: float64

e If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.
e The corresponding expected counts in the sample are then:

## Goals

## Urban.Rural Grades Popular Sports Sum

## Rural 77.0 (61.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
#i# Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
#i# Urban 92.0 (61.7%) 52.5 (29.5%) 33.5 (18.8}%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)
2.3 Calculation of expected table

## Goals

## Urban.Rural Grades Popular Sports Sum

#it Rural 77.0 (61.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
#i# Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
#i# Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8}%) 178.0 (100%)
##t Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

« We note that



— The relative frequency for a given column is columnTotal divided by tableTotal. For example
Grades, which is 247 = 51.7%.

478

— The expected value in a given cell in the table is then the cell’s relative column frequency multiplied

by the cell’s rowTotal. For example Rural and Grades: 149 x 51.7% = 77.0.

e This can be summarized to:

— The expected value in a cell is the product of the cell’s rowTotal and columnTotal divided by

tableTotal.

2.4 Chi-squared (\?) test statistic

¢ We have an observed table:

tab

## Goals Grades Popular Sports
## Urban.Rural

## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

##
##
##
##
##
##

e And an expected table, if Hy is true:

Goals
Urban.Rural Grades Popular Sports Sum
Rural 77.0 44.0
Suburban 78.0 44.5
Urban 92.0 52.5
Sum 247.0 141.0

28.1 149.0
28.4 151.0
33.5 178.0
90.0 478.0

e If these tables are “far from each other”, then we reject Hy. We want to measure the distance via the

Chi-squared test statistic:

- X2=% (f";ifﬁ Sum over all cells in the table
— f, is the frequency in a cell in the observed table

— fe is the corresponding frequency in the expected table.

« We have:

X

e Is this a large distance??

2.5 x’-test template.

e We want to test the hypothesis Hy of independence in a table with r rows and ¢ columns:
— We take a sample and calculate X% - the observed value of the test statistic.
— p-value: Assume Hj is true. What is then the chance of obtaining a larger X2 than X

repeat the experiment?

obs — 77

. (5T —177)?

(26 — 33.5)2

33.5

=18.8

2
obs?

o This can be approximated by the y2-distribution with df = (r — 1)(c — 1) degrees of freedom.
e For Goals and Urban.Rural we have r = ¢ =3, i.e. df =4 and Xogbs = 18.8, so the p-value is:

if we
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from scipy.stats import chi2

1 - chi2.cdf(18.8, 4)

## np.float64(0.0008603302817890013)

e There is clearly a significant association between Goals and Urban.Rural.

2.6 Perform the test using software

e All of the above calculations can be obtained as follows:

import statsmodels.api as sm

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
chisqtab = sm.stats.Table(tab)
chisqtab.fittedvalues

## Goals Grades Popular Sports
## Urban.Rural

## Rural 76.993724 43.951883 28.054393
## Suburban 78.027197 44.541841 28.430962
## Urban 91.979079 52.506276 33.514644

print(chisqtab.test_nominal_association())

## df 4
## pvalue 0.0008496551610398528
## statistic 18.827626180696555




e The frequency data can also be put directly into a matrix.

import numpy as np

data = np.array([

57, 50, 42,

87, 42, 22,

103, 49, 26]) .reshape(3,3)
tab = pd.DataFrame(data,

index=["Rural", "Suburban", "Urban'],
columns=["Grades", "Popular", "Sports"])
tab
## Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

chisqtab = sm.stats.Table(tab)
chisqtab.fittedvalues

## Grades Popular Sports
## Rural 76.993724 43.951883 28.054393
## Suburban 78.027197 44.541841 28.430962
## Urban 91.979079 52.506276 33.514644

print(chisqtab.test_nominal_association())

## df 4
## pvalue 0.0008496551610398528
## statistic 18.827626180696555

3 The y>-distribution

3.1 The y?-distribution

o The x2-distribution with df degrees of freedom:
— Is never negative.
— Has mean p = df
— Has standard deviation o = /2df
— Is skewed to the right, but approaches a normal distribution when df grows.
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4 Agresti - Summary

4.1 Summary

o For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be
fe>5.
e Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

1. Assumptions: Two categorical variables, random sampling, f, = 5 in all cells
2. Hypotheses: Hy: Statistical independence of variables
H,: Statistical dependence of variables

e g2
3. Test statistic: y*> = 3 o = fe)”

, where f, = (R()w‘l()tal?(C01un?I'1 total)
fo Taotal sample size
4. P-value: P = right-tail probability above observed y? value,
for chi-squared distribution with df = (r — 1)(¢c — 1)
5. Conclusion: Report P-value
If decision needed, reject Hy at a-level if P = «

5 Standardized residuals

5.1 Residual analysis

o If we reject the hypothesis of independence it can be of interest to identify the significant deviations.

e In a given cell in the table, f, — f. is the deviation between data and the expected values under the
null hypothesis.

e We assume that f. > 5.

If Hy is true, then the standard error of f, — f. is given by

se =/ f.(1 — rowProportion)(1 — columnProportion)



e The corresponding z-score
fo - fe

se

z =

should in 95% of the cells be between +2. Values above 3 or below -3 should not appear.
o In popKids table cell Rural and Grade we got f. = 77.0 and f, = 57. Here columnProportion= 51.7%
and rowProportion= 149/478 = 31.2%.
e We can then calculate
57 =177

z = =-3.95
V/T7(1 = 0.517)(1 — 0.312)

e Compared to the null hypothesis there are way too few rural kids who find grades important.
e In summary: The standardized residuals allow for cell-by-cell (f. vs f,) comparision.

5.2 Residual analysis

¢ We can calculate the standardized residuals:

import statsmodels.api as sm

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
table = sm.stats.Table(tab)
table.standardized_resids

## Goals Grades  Popular Sports
## Urban.Rural

## Rural -3.950845 1.309623 3.522500
## Suburban 1.766661 -0.548407 -1.618521
## Urban 2.086578 -0.727433 -1.818622

5.3 Why not just use two-way ANOVA ?

o number of persons in different categories are not normally distributed

o variance typically larger the larger expected frequency

« underlying data are discrete (for each person, which column and row category does person belong to)

 these discrete variables are naturally modelled in terms of probabilies for different categories

e therefore hypothesis of independence becomes natural null hypothesis

« it is possible to model table frequencies as dependent variable using a regression model but then we
need the framework of generalized linear models (see last slides)

Contingency table:
o counts of how many individuals fall within different categories for two (or more) categorical variables

Two-way ANOVA:

o a number of individuals/objects/. .. available for each combination of two categorical variables
« mnext a continuous variable is measured for each individual or object (this becomes the response variable)

6 Models for table data

6.1 Example

o We will study the dataset HairEyeColor.

HairEyeColor = pd.read_csv("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt", sep="\t")
HairEyeColor.head(6)



##
##
##
##
##
##
##

g W= O

Hair Eye Sex Freq
Black Brown Male 32

Brown Brown Male 53
Red Brown Male 10
Blond Brown Male 3

Black Blue Male 11
Brown Blue Male 50

Data is organized such that the variable Freq gives the frequency of each combination of the factors
Hair, Eye and Sex.

For example: 32 observations are men with black hair and brown eyes.

We are interested in the association between eye color and hair color ignoring the sex

We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

HairEye = HairEyeColor.groupby(['Eye', 'Hair'], as_index=False)['Freq'].sum()

HairEye

## Eye Hair Freq
## 0 Blue Black 20
## 1 Blue Blond 94
##t 2 Blue Brown 84
## 3 Blue Red 17
## 4 Brown Black 68
## 5 Brown Blond 7
## 6 Brown Brown 119
#t 7 Brown Red 26
## 8 Green Black 5
## 9 Green Blond 16
## 10 Green Brown 29
## 11 Green Red 14
## 12 Hazel Black 15
## 13 Hazel Blond 10
## 14 Hazel Brown 54
## 15 Hazel Red 14

6.2 Model specification

We can write down a model for (the logarithm of) the expected frequencies by using dummy variables
Zels Ze2, Ze3 and Zp1, Zh2, Zh3
To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

log(fe) = o+ Beize1 + Beazea + Beszes + Prizr1 + Pr2zn + Prazns.

Note that we haven’t included an interaction term, which is this case implies, that we assume indepen-
dence between Eye and Hair in the model.

Since our response variable now is a count it is no longer a linear model as we have been used to (linear
regression).

Instead it is a so-called generalized linear model and the relevant command is glm.

6.3 Model specification

import statsmodels.formula.api as smf

model = smf.glm('Freq ~ Hair + Eye', data=HairEye, family=sm.families.Poisson()).fit()



o The family argument (Poisson) ensures that data are interpreted as discrete counts and not a continuous
variable.

model . summary ()

## <class 'statsmodels.iolib.summary.Summary'>

## o

## Generalized Linear Model Regression Results

##

## Dep. Variable: Freq No. Observations: 16

## Model: GLM Df Residuals: 9

## Model Family: Poisson  Df Model: 6

## Link Function: Log  Scale: 1.0000

## Method: IRLS Log-Likelihood: -113.52

## Date: Mon, 03 Nov 2025 Deviance: 146.44

## Time: 18:12:23  Pearson chi2: 138.

## No. Iterations: 5 Pseudo R-squ. (CS): 1.000

## Covariance Type: nonrobust

##

# coef std err z P>|z| [0.025 0.975]
# -
## Intercept 3.6693 0.111 33.191 0.000 3.453 3.886
## Hair[T.Blond] 0.1621 0.131 1.238 0.216 -0.094 0.419
## Hair[T.Brown] 0.9739 0.113 8.623 0.000 0.752 1.195
## Hair[T.Red] -0.4195 0.153 -2.745 0.006 -0.719 -0.120
## Eye[T.Brown] 0.0230 0.096 0.240 0.811 -0.165 0.211
## Eye[T.Green] -1.2118 0.142 -8.510 0.000 -1.491 -0.933
## Eye[T.Hazell -0.8380 0.124 -6.752 0.000 -1.081 -0.595
##

## o

o A deviance value of X? = 146.44 with df = 9 shows that there is very clear significance and we reject
the null hypothesis of independence between hair and eye color.

10
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## np.float64(0.0)

6.4 Expected values and standardized residuals

o We also want to look at expected values and standardized (studentized) residuals.

3.67+0.02

e The null hypothesis predicts e = 40.1 with brown eyes and black hair, but we have observed 68.

e This is significantly too many, since the standardized residual is 6.1.

e The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is
significantly too few, since the standardized residual is -8.3.

HairEye['fitted'] = model.fittedvalues
HairEye['resid'] = model.get_influence() .resid_studentized

HairEye

## Eye Hair Freq fitted resid
## 0 Blue Black 20  39.222973 -4.253816
## 1 Blue Blond 94  46.123311 9.967550
## 2 Blue Brown 84 103.868243 -3.397883
## 3 Blue Red 17  25.785473 -2.311052
## 4 Brown Black 63 40.135135 6.136520
## 5 Brown Blond 7  47.195946 -8.328248
## 6 Brown Brown 119 106.283784 2.164282
## 7  Brown Red 26  26.385135 -0.100824
## 8 Green Black 5 11.675676 -2.287896
## 9 Green Blond 16 13.729730 0.732023
## 10 Green Brown 29 30.918919 -0.508263

11



## 11 Green Red 14 7.675676 2.576569
## 12 Hazel Black 15 16.966216 -0.575026
## 13 Hazel Blond 10 19.951014 -2.737977
## 14 Hazel Brown 54 44.929054 2.050216
## 15 Hazel Red 14 11.153716 0.989512

7 Introduction to logistic regression

7.1 Binary response

o We consider a binary response y with outcome 1 or 0. This might be a code indicating whether a person
is able or unable to perform a given task.
e Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
e We shall study models for
P(y=1]a)

i.e. the probability that a person of age x is able to complete the task.
e We shall see methods for determining whether or not age actually influences the probability, i.e. is y
independent of x?

7.2 A linear model
Ply=1|z)=a+ fz

is simple, but often inappropiate. If 5 is positive and x sufficiently large, then the probability exceeds 1.

8 Simple logistic regression

8.1 Logistic model

Instead we consider the odds that the person is able to complete the task

Ply=1lz)  Ply=1[z)

Odds(y =112) = 5 =02 “ T=Ply=1]2)

which can have any positive value.

The logistic model is defined as:
logit(P(y =1|x)) =log(0dds(y = 1|z)) = a + Bz
The function logit(p) = log(%) - i.e. log of odds - is termed the logistic transformation.

Remark that log odds can be any number, where zero corresponds to P(y = 1|z) = 0.5. Solving o + Sz =0
shows that at age o = —a/8 you have fifty-fifty chance of solving the task.

8.2 Logistic transformation

import numpy as np
from scipy.special import logit, expit

p = np.arange(0.1, 1.0, 0.2) # stop ts ezclusive, so use 1.0
p

## array([0.1, 0.3, 0.5, 0.7, 0.9])

12



1 = logit(p)

1.round(3)

## array([-2.197, -0.847, O. , 0.847, 2.1971)
expit (1)

## array([0.1, 0.3, 0.5, 0.7, 0.9])

e The inverse logistic transformation expit() applied to the transformed values can recover the original
probabilities:

Plot of logistic function and inverse logistic

import matplotlib.pyplot as plt

p = np.arange(0.001, 0.999, 0.005)

fit = plt.plot(p, logit(p), label='logit(p)')
plt.xlabel('p')

plt.ylabel('logit(p)')

plt.show()

logit(p)

0.0 0.2 0.4 0.6 0.8 1.0

X = np.arange(-7, 7, 0.1)

fig = plt.plot(x, expit(x), label='inverse logit (expit)')
plt.xlabel('x')

plt.ylabel('expit(x)')

13
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8.3 0Odds-ratio

Interpretation of 3:

What happens to odds, if we increase age by 1 year?
Consider the so-called odds-ratio:

Odds(y =1z +1) exp(a+B(xz+1))
Odds(y =1|x) exp(a+pBz) p(f)

where we see, that exp() equals the odds for age x + 1 relative to odds at age x.

This means that when age increase by 1 year, then the relative change

exp(a+ f(z+ 1)) — exp(a + Sz)
expla + Fz)

in odds is given by 100(exp(8) — 1)%.

14



8.4 Simple logistic regression

Logistic curves

1.0

P(y=1[x)
00 05

X

Examples of logistic curves for P(y = 1|z). The black curve has a positive S-value (=10), whereas the red
has a negative 8 (=-3).

In addition we note that:

o Increasing the absolute value of § yields a steeper curve.
« When P(y =1|z) = 1 then logit is zero, i.e. a 4+ Sz = 0.

This means that at age z = —% you have 50% chance to perform the task.

8.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

e Data structure: For each level of income, we let n denote the number of persons with that income, and
credit how many of these that carries a credit card.

import pandas as pd

crelnc = pd.read_csv("https://asta.math.aau.dk/datasets?file=income-credit.csv", sep=',')
creInc.head(6)

## Income n credit
## 0 12 1 0
## 1 13 1 0
## 2 14 8 2
##t 3 15 14 2
## 4 16 9 0
## 5 17 8 2

8.6 Example: Fitting the model

import statsmodels.api as sm
import statsmodels.formula.api as smf

modelFit = smf.glm(formula='credit + I(n - credit) ~ Income',
data=crelnc,
family=sm.families.Binomial()).fit()
modelFit.summary ()

15



## <class 'statsmodels.iolib.summary.Summary'>

## nnn

#it Generalized Linear Model Regression Results

#i#

## Dep. Variable: ['credit', 'I(n - credit)'] No. Observations: 24
## Model: GLM  Df Residuals: 22
## Model Family: Binomial Df Model: 1
## Link Function: Logit  Scale: 1.0000
## Method: IRLS Log-Likelihood: -27.417
## Date: Mon, 03 Nov 2025 Deviance: 39.276
## Time: 18:12:26  Pearson chi2: 32.3
## No. Iterations: 5 Pseudo R-squ. (CS): 0.6698
## Covariance Type: nonrobust

##

#it coef std err z P>|z]| [0.025 0.975]

# -

## Intercept -3.5179 0.710 -4.953 0.000 -4.910 -2.126

## Income 0.1054 0.026 4.030 0.000 0.054 0.157

##

## "

e The response has the form credit + I(n - credit).
o We need to use the function glm (generalized linear model).

o The argument family=sm.families.Binomial() tells the function that the data has binomial variation.
Leaving out this argument will lead Python to believe that data follows a normal distribution (linear
regression).

o The params extracts the coefficients (estimates of parameters) from the model:

modelFit.params
## Intercept  -3.517947

## Income 0.105409
## dtype: float64

8.7 Test of no effect

modelFit.summary2() .tables[1]

## Coef. Std.Err. z P>|z| [0.025 0.975]
## Intercept -3.517947 0.710336 -4.952513 7.326117e-07 -4.910179 -2.125714
## Income 0.105409 0.026157 4.029788 5.582714e-05 0.054141 0.156677

Our model for dependence of odds of having a credit card related to income(z) is
logit(z) = a+ fx
The hypothesis of no relation between income and ability to obtain a credit card corresponds to
Hy: =0

with the alternative 8 # 0. Inspecting the summary reveals that B = 0.1054 is more than 4 standard errors
away from zero.

16



With a z-score equal to 4.03 we get the tail probability

0.4-
0.3-
- probability
% .
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2 []
) B:0.000
0.1-
0.0-

50 25 0.0 25 50

from scipy.stats import norm

ptail = 2 * (1 - norm.cdf(4.03))
ptail
## np.float64(5.577685288105094e-05)

Which is very significant - as reflected by the p-value.

8.8 Confidence interval for odds ratio
From the summary:

. B = 0.10541 and hence exp(B) — 1 =10.11. If income increases by 1000 euro, then odds increases by
11%.

« Standard error on 3 is 0.02616 and hence a 95% confidence interval for log-odds ratio is B +1.96 x
0.02616 = (0.054; 0, 157).

o Corresponding interval for odds ratio: exp((0.054;0,157)) = (1.056;1.170),
i.e. the increase in odds is - with confidence 95% - between 5.6% and 17%.

8.9 Plot of model predictions against actual data

## Ignoring unknown labels:
## * ylab : "Probability of credit card"
## x xlab : "Income"

17



Expected (red line) and observed (black dots) probabilities
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o Tendency is fairly clear and very significant.
e Due to low sample size at some income levels, the deviations are quite large.

9 Multiple logistic regression

9.1 Several numeric predictors

We generalize the model to the case, where we have k predictors zi,x9,...,2r. Where some might be
dummies for a factor.

lOgit(P(y:1|l‘1,$2,...,$k)) :a+ﬂlxl++ﬂkxk

Interpretation of S-values is unaltered: If we fix x5, ...,z and increase x; by one unit, then the relative
change in odds is given by exp(8;) — 1.

9.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in
the breast.

e Nine clinical variables with a score between 0 and 10.
o The binary variable Class with levels benign/malignant.

o By default Python orders the levels lexicografically and chooses the first level as reference (y = 0).
Hence benign is reference, and we model odds of malignant.
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We shall work with only 4 of the predictors, where two of these have been discretized.

BC = pd.read_csv("https://asta.math.aau.dk/datasets?file=BC0O.dat", sep=' ')

BC.head (6)

## nuclei cromatin Size.low Size.medium Shape.low Class
## 0 1 3 True False True benign
## 1 10 3 False True False benign
## 2 2 3 True False True benign
## 3 4 3 False False False benign
## 4 1 3 True False True benign
## 5 10 9 False False False malignant

9.3 Global test of no effects

First we fit the model mainEffects with main effect of all predictors - remember the notation ~ . for all
predictors. Then we fit the model noEffects with no predictors.

BC['Class_numeric'] = (BC['Class'] == 'malignant').astype(int)
BC = BC.rename(columns={

'Size.low': 'Size_low',

'Size.medium': 'Size_medium',

'Shape.low': 'Shape_low'
1))
mainEffects = smf.glm('Class_numeric ~ nuclei + cromatin + Size_low + Size_medium + Shape_low', data=BC
noEffects = smf.glm('Class_numeric ~ 1', data=BC, family=sm.families.Binomial()).fit()

First we want to test, whether there is any effect of the predictors, i.e the null hypothesis

Ho: Br=po=p3=01=05=0

9.4 Example
We test the hypothesis that all 8; = 0 using a x2-test.

from scipy.stats import chi2

11 noEffects = noEffects.llf

11 mainEffects = mainEffects.llf

test_stat = -2 * (11_noEffects - 11_mainEffects)
df = mainEffects.df_model - noEffects.df_model
p_value = 1 - chi2.cdf(test_stat, df)
print(f"Test statistic: {test_stat}")

## Test statistic: 749.2859276261477

print (f"Degrees of freedom: {df}")

## Degrees of freedom: 5
print(f"P-value: {p_valuel}")

## P-value: 0.0
mainEffects is a much better model.

The test statistic is the Deviance (749.29), which should be small.
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It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis)
degrees of freedom.

The 95%-critical value for the x?(5) distribution is 11.07 and the p-value is in practice zero.

9.5 Test of influence of a given predictor

mainEffects.summary2() .tables[1] .round(4)

#it Coef. Std.Err. z P>|z| [0.025 0.975]
## Intercept -0.7090 0.8570 -0.8274 0.4080 -2.3887 0.9706
## Size_low[T.Truel -3.6154 0.8081 -4.4739 0.0000 -5.1992 -2.0315
## Size _medium[T.True] -2.3773 0.7188 -3.3073 0.0009 -3.7861 -0.9685
## Shape_lowl[T.Truel -2.1490 0.6054 -3.5496 0.0004 -3.3356 -0.9624
## nuclei 0.4403 0.0823 5.3483 0.0000 0.2790 0.6017
## cromatin 0.5058 0.1444 3.5025 0.0005 0.2228 0.7888

For each predictor p can we test the hypothesis:
Ho : Bp =0

e Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by
the p-values.

9.6 Prediction and classification
BC['pred'] = mainEffects.predict()

o We add the column pred to our dataframe BC.
e pred is the final model’s estimate of the probability of malignant.

BC[['Class', 'pred']].head(6)

## Class pred
## 0 benign 0.010817
## 1 benign 0.944507
## 2 benign 0.016702
## 3 benign 0.928883
## 4 benign 0.010817
## 5 malignant 0.999738

Not good for patients 2 and 4.

We may classify by round (BC$pred):

e 0 to denote benign (probability BC$pred less than 0.5)
o 1 to denote malignant (probability BC$pred more than 0.5)

BC['pred_class'] = np.where(BC['pred'] > 0.5, "pred_malignant", "pred_benign")
tab = pd.crosstab(BC['Class'], BC['pred_class'])
tab

## pred_class pred_benign pred_malignant

## Class
## benign 433 11
## malignant 11 228

11411=22 patients are misclassified.
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malignant_preds = BC.loc[BC['Class'] == 'malignant', 'pred']
malignant_preds_sorted = malignant_preds.sort_values() .head(5)
malignant_preds_sorted

## 440 0.034703
## 216 0.036964

## 63 0.088544
## 474 0.189870
## 55 0.205024

## Name: pred, dtype: float64
There is a malignant woman with a predicted probability of malignancy, which is only 3.5%.

If we assign all women with predicted probability of malignancy above 5% to further investigation, then we
only miss two malignant.

BC['pred_class'] = np.where(BC['pred'] > 0.05, "pred_malignant", "pred_benign")

tab = pd.crosstab(BC['Class'], BC['pred_class'])

tab

## pred_class pred_benign pred_malignant

## Class
## benign 394 50
## malignant 2 237

The expense is that the number of false positive increases from 11 to 50.

BC['pred_class'] = np.where(BC['pred'] > 0.1, "pred_malignant", "pred_benign")
tab = pd.crosstab(BC['Class'], BC['pred_class'])
tab

## pred_class pred_benign pred_malignant

## Class
## benign 417 27
## malignant 3 236

o If we instead set the alarm to 10%, then the number of false positives decreases from 50 to 27.
o But at the expense of 3 false negative (instead of 2 as before).
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