ASTA

The ASTA team

Contents

1	Contingency tables									
	1.1 A contingency table	•			2					
2	Independence									
	2.1 Independence				9					
	2.2 The Chi-squared test for independence									
	2.3 Calculation of expected table									
	2.4 Chi-squared (χ^2) test statistic				4					
	$2.5 \chi^2$ -test template				4					
	2.6 Perform the test using software				Ę					
3	The χ^2 -distribution				6					
•	3.1 The χ^2 -distribution				(
				•	`					
4	Agresti - Summary				7					
	4.1 Summary			•	7					
5	Standardized residuals				7					
	5.1 Residual analysis				7					
	5.2 Residual analysis				8					
	5.3 Why not just use two-way ANOVA?				8					
6	Models for table data				8					
	6.1 Example				8					
	6.2 Model specification				ç					
	6.3 Model specification				Ç					
	6.4 Expected values and standardized residuals				11					
7	Introduction to logistic regression				12					
•	7.1 Binary response									
	7.2 A linear model									
	12 1110012 1110010 1 1 1 1 1 1 1 1 1 1 1			•						
8	Simple logistic regression				12					
	8.1 Logistic model				12					
	8.2 Logistic transformation				12					
	8.3 Odds-ratio				14					
	8.4 Simple logistic regression				15					
	8.5 Example: Credit card data				15					
	8.6 Example: Fitting the model				15					
	8.7 Test of no effect									
	8.8 Confidence interval for odds ratio				17					
	8.9 Plot of model predictions against actual data				17					
	1				_					

9	Mu	ltiple logistic regression	18
	9.1	Several numeric predictors	18
	9.2	Example	18
	9.3	Global test of no effects	19
	9.4	Example	19
	9.5	Test of influence of a given predictor	20
	9.6	Prediction and classification	20

1 Contingency tables

1.1 A contingency table

- We return to the dataset popularKids, where we study association between 2 factors: Goals and Urban.Rural.
- Based on a sample we make a cross tabulation of the factors and we get a so-called **contingency table** (*krydstabel*).

```
import pandas as pd

popKids = pd.read_csv("https://asta.math.aau.dk/datasets?file=PopularKids.dat", sep="\t")
popKids = popKids.rename(columns={'Urban/Rural': 'Urban.Rural'})

tab_totals = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'], margins=True)
tab_totals
```

```
## Goals
                         Popular Sports
                 Grades
                                           All
## Urban.Rural
                                            149
## Rural
                     57
                               50
                                       42
## Suburban
                     87
                                           151
                               42
## Urban
                    103
                               49
                                       26
                                           178
## All
                    247
                              141
                                       90
                                           478
```

1.1.1 A conditional distribution

• Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 100 (up to rounding):

```
tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'], margins=False)
tab_pct = (tab.div(tab.sum(axis=1), axis=0) * 100)
tab_pct['All'] = tab_pct.sum(axis=1)
tab_pct.round()
```

```
## Goals
                Grades Popular Sports
                                           All
## Urban.Rural
## Rural
                  38.0
                           34.0
                                    28.0
                                        100.0
## Suburban
                  58.0
                           28.0
                                    15.0 100.0
## Urban
                  58.0
                           28.0
                                   15.0 100.0
```

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
 - Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

- Recall, that two factors are **independent**, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be **dependent**.
- If we e.g. have the following conditional **population distributions** of Goals given Urban.Rural:

```
##
               Goals
## Urban.Rural Grades Popular Sports
##
      Rural
                    500
                             300
                             300
##
      Suburban
                    500
                                     200
##
      Urban
                    500
                             300
                                     200
```

- $\bullet\,$ Then the factors ${\tt Goals}$ and ${\tt Urban.Rural}$ are independent.
- We take a sample and "measure" the factors F_1 and F_2 . E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

 $H_0: F_1$ and F_2 are independent, $H_a: F_1$ and F_2 are dependent.

2.2 The Chi-squared test for independence

• The relative frequencies in the sample gives an estimate of the unconditional distribution of Goals:

```
tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
n = tab.values.sum()
pctGoals = (tab.sum(axis=0) / n * 100).round(1)
pctGoals
## Goals
```

```
## Grades 51.7
## Popular 29.5
## Sports 18.8
## dtype: float64
```

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- The corresponding expected counts in the sample are then:

```
##
              Goals
## Urban.Rural Grades
                              Popular
                                            Sports
                                                           Sum
##
      Rural
                77.0 (51.7%)
                              44.0 (29.5%)
                                             28.1 (18.8%) 149.0 (100%)
##
      Suburban 78.0 (51.7%)
                              44.5 (29.5%)
                                             28.4 (18.8%) 151.0 (100%)
##
      Urban
                92.0 (51.7%) 52.5 (29.5%)
                                             33.5 (18.8%) 178.0 (100%)
##
      Sum
               247.0 (51.7%) 141.0 (29.5%)
                                             90.0 (18.8%) 478.0 (100%)
```

2.3 Calculation of expected table

```
##
              Goals
## Urban.Rural Grades
                              Popular
                                             Sports
                                                           Sum
                77.0 (51.7%)
                               44.0 (29.5%)
                                              28.1 (18.8%) 149.0 (100%)
##
##
      Suburban
                78.0 (51.7%)
                               44.5 (29.5%)
                                              28.4 (18.8%) 151.0 (100%)
##
                92.0 (51.7%) 52.5 (29.5%)
                                             33.5 (18.8%) 178.0 (100%)
##
      Sum
               247.0 (51.7%) 141.0 (29.5%)
                                             90.0 (18.8%) 478.0 (100%)
```

• We note that

- The relative frequency for a given column is column Total divided by table Total. For example Grades, which is $\frac{247}{478} = 51.7\%$.
- The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's rowTotal. For example Rural and Grades: $149 \times 51.7\% = 77.0$.
- This can be summarized to:
 - The expected value in a cell is the product of the cell's rowTotal and columnTotal divided by tableTotal.

Chi-squared (χ^2) test statistic

• We have an **observed table**:

tab

##	Goals	Grades	Popular	Sports
##	Urban.Rural			
##	Rural	57	50	42
##	Suburban	87	42	22
##	Urban	103	49	26

• And an **expected table**, if H_0 is true:

```
##
              Goals
##
  Urban.Rural Grades Popular Sports Sum
##
      Rural
                77.0
                                28.1 149.0
      Suburban
                78.0
                        44.5
                                28.4 151.0
##
      Urban
                92.0
                        52.5
                                33.5 178.0
##
               247.0 141.0
##
                                90.0 478.0
```

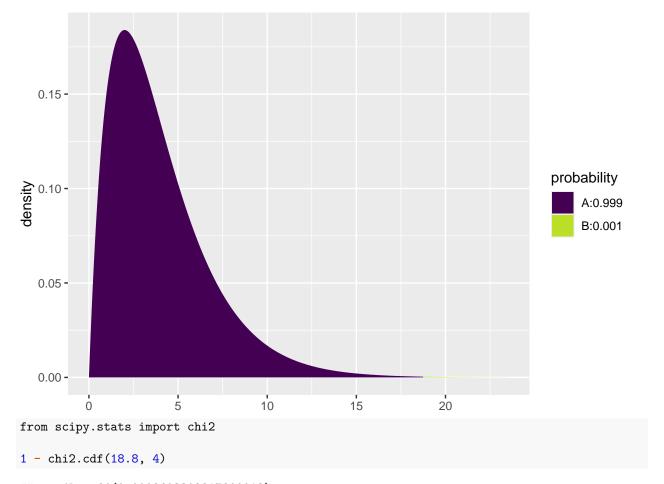
- If these tables are "far from each other", then we reject H_0 . We want to measure the distance via the Chi-squared test statistic:
 - $-X^2 = \sum \frac{(f_o f_e)^2}{f_e}$: Sum over all cells in the table $-f_o$ is the frequency in a cell in the observed table $-f_e$ is the corresponding frequency in the expected table.
- We have:

$$X_{obs}^2 = \frac{(57 - 77)^2}{77} + \ldots + \frac{(26 - 33.5)^2}{33.5} = 18.8$$

• Is this a large distance??

χ^2 -test template.

- We want to test the hypothesis H_0 of independence in a table with r rows and c columns:
 - We take a sample and calculate X_{obs}^2 the observed value of the test statistic.
 - p-value: Assume H_0 is true. What is then the chance of obtaining a larger X^2 than X_{obs}^2 , if we repeat the experiment?
- This can be approximated by the χ^2 -distribution with df = (r-1)(c-1) degrees of freedom.
- For Goals and Urban. Rural we have r=c=3, i.e. df=4 and $X_{obs}^2=18.8$, so the p-value is:



np.float64(0.0008603302817890013)

 \bullet There is clearly a significant association between ${\tt Goals}$ and ${\tt Urban.Rural}.$

2.6 Perform the test using software

• All of the above calculations can be obtained as follows:

```
import statsmodels.api as sm
tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
chisqtab = sm.stats.Table(tab)
chisqtab.fittedvalues
## Goals
                             Popular
                   Grades
                                         Sports
## Urban.Rural
## Rural
                76.993724
                           43.951883
                                      28.054393
## Suburban
                78.027197
                           44.541841
                                      28.430962
## Urban
                91.979079 52.506276 33.514644
print(chisqtab.test_nominal_association())
## df
## pvalue
               0.0008496551610398528
## statistic
               18.827626180696555
```

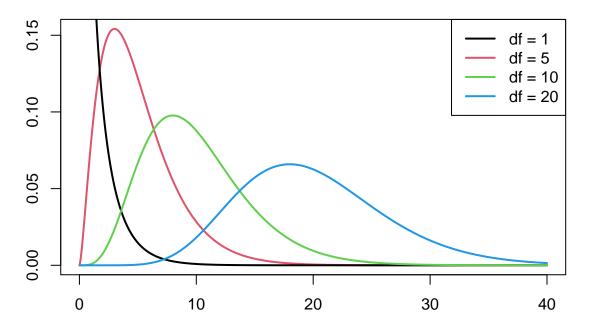
• The frequency data can also be put directly into a matrix.

```
import numpy as np
data = np.array([
 57, 50, 42,
 87, 42, 22,
 103, 49, 26]).reshape(3,3)
tab = pd.DataFrame(data,
                   index=["Rural", "Suburban", "Urban"],
                   columns=["Grades", "Popular", "Sports"])
tab
##
             Grades
                     Popular
                              Sports
## Rural
                 57
                           50
                                   42
## Suburban
                 87
                           42
                                   22
## Urban
                103
                           49
                                   26
chisqtab = sm.stats.Table(tab)
chisqtab.fittedvalues
                Grades
                          Popular
                                       Sports
## Rural
             76.993724
                        43.951883
                                    28.054393
## Suburban 78.027197
                        44.541841
                                    28.430962
## Urban
             91.979079
                        52.506276 33.514644
print(chisqtab.test_nominal_association())
## df
## pvalue
               0.0008496551610398528
## statistic
               18.827626180696555
```

3 The χ^2 -distribution

3.1 The χ^2 -distribution

- The χ^2 -distribution with df degrees of freedom:
 - Is never negative.
 - Has mean $\mu = df$
 - Has standard deviation $\sigma = \sqrt{2df}$
 - Is skewed to the right, but approaches a normal distribution when df grows.



4 Agresti - Summary

4.1 Summary

- For the Chi-squared statistic, X^2 , to be appropriate we require that the expected values have to be $f_e \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

- 1. Assumptions: Two categorical variables, random sampling, $f_e \ge 5$ in all cells
- 2. Hypotheses: H_0 : Statistical independence of variables H_a : Statistical dependence of variables
- 3. Test statistic: $\chi^2 = \sum \frac{(f_o f_e)^2}{f_e}$, where $f_e = \frac{(\text{Row total})(\text{Column total})}{\text{Total sample size}}$
- 4. *P*-value: P = right-tail probability above observed χ^2 value, for chi-squared distribution with df = (r 1)(c 1)
- 5. Conclusion: Report *P*-value
 If decision needed, reject H_0 at α -level if $P \leq \alpha$

5 Standardized residuals

5.1 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_o f_e$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_e \geq 5$.
- If H_0 is true, then the standard error of $f_o f_e$ is given by

$$se = \sqrt{f_e(1 - \text{rowProportion})(1 - \text{columnProportion})}$$

• The corresponding z-score

$$z = \frac{f_o - f_e}{se}$$

should in 95% of the cells be between ± 2 . Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_e = 77.0$ and $f_o = 57$. Here columnProportion= 51.7% and rowProportion= 149/478 = 31.2%.
- We can then calculate

$$z = \frac{57 - 77}{\sqrt{77(1 - 0.517)(1 - 0.312)}} = -3.95$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell $(f_e \text{ vs } f_o)$ comparision.

5.2 Residual analysis

• We can calculate the standardized residuals:

```
import statsmodels.api as sm

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
table = sm.stats.Table(tab)
table.standardized_resids
```

```
## Goals Grades Popular Sports
## Urban.Rural
## Rural -3.950845 1.309623 3.522500
## Suburban 1.766661 -0.548407 -1.618521
## Urban 2.086578 -0.727433 -1.818622
```

5.3 Why not just use two-way ANOVA?

- number of persons in different categories are not normally distributed
- variance typically larger the larger expected frequency
- underlying data are discrete (for each person, which column and row category does person belong to)
- these discrete variables are naturally modelled in terms of probabilies for different categories
- therefore hypothesis of independence becomes natural null hypothesis
- it is possible to model table frequencies as dependent variable using a regression model but then we need the framework of *generalized linear models* (see last slides)

Contingency table:

- counts of how many individuals fall within different categories for two (or more) categorical variables Two-way ANOVA:
 - a number of individuals/objects/... available for each combination of two categorical variables
 - next a continuous variable is measured for each individual or object (this becomes the response variable)

6 Models for table data

6.1 Example

• We will study the dataset HairEyeColor.

```
HairEyeColor = pd.read_csv("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt", sep="\t")
HairEyeColor.head(6)
```

```
##
       Hair
               Eve
                      Sex
                           Freq
      Black
## 0
            Brown
                     Male
                              32
                     Male
## 1
      Brown
             Brown
                              53
                              10
## 2
        Red
             Brown
                     Male
## 3
      Blond
             Brown
                     Male
                              3
## 4
      Black
              Blue
                     Male
                              11
              Blue
      Brown
                    Male
```

- Data is organized such that the variable Freq gives the frequency of each combination of the factors Hair, Eye and Sex.
- For example: 32 observations are men with black hair and brown eyes.
- We are interested in the association between eye color and hair color ignoring the sex
- We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

```
HairEye = HairEyeColor.groupby(['Eye', 'Hair'], as_index=False)['Freq'].sum()
HairEye
```

```
##
         Eye
                Hair
                      Freq
## 0
        Blue
               Black
                         20
## 1
                         94
        Blue
               Blond
## 2
        Blue
               Brown
                         84
## 3
        Blue
                 Red
                         17
##
       Brown
               Black
                         68
## 5
       Brown
               Blond
                          7
## 6
       Brown
               Brown
                        119
## 7
       Brown
                 R.ed
                         26
## 8
       Green
                          5
               Black
## 9
                         16
       Green
               Blond
## 10
       Green
               Brown
                         29
## 11
                         14
       Green
                 Red
## 12
       Hazel
               Black
                         15
## 13
       Hazel
                         10
               Blond
## 14
       Hazel
               Brown
                         54
       Hazel
## 15
                 Red
                         14
```

6.2 Model specification

- We can write down a model for (the logarithm of) the expected frequencies by using dummy variables z_{e1}, z_{e2}, z_{e3} and z_{h1}, z_{h2}, z_{h3}
- To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

$$\log(f_e) = \alpha + \beta_{e1}z_{e1} + \beta_{e2}z_{e2} + \beta_{e3}z_{e3} + \beta_{h1}z_{h1} + \beta_{h2}z_{h2} + \beta_{h3}z_{h3}.$$

- Note that we haven't included an interaction term, which is this case implies, that we assume independence between Eye and Hair in the model.
- Since our response variable now is a count it is no longer a linear model as we have been used to (linear regression).
- Instead it is a so-called generalized linear model and the relevant command is glm.

6.3 Model specification

```
import statsmodels.formula.api as smf

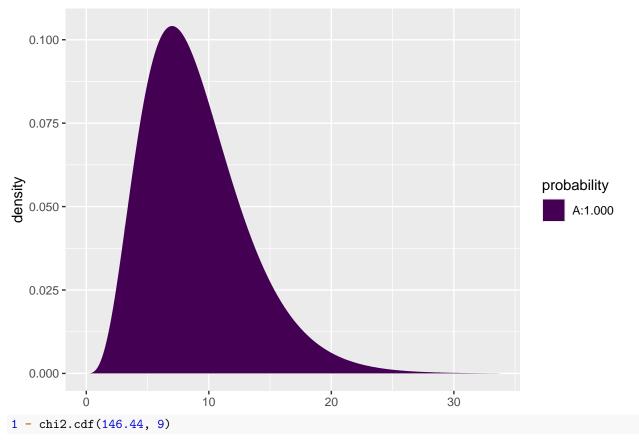
model = smf.glm('Freq ~ Hair + Eye', data=HairEye, family=sm.families.Poisson()).fit()
```

• The family argument (Poisson) ensures that data are interpreted as discrete counts and not a continuous variable.

model.summary()

```
## <class 'statsmodels.iolib.summary.Summary'>
##
               Generalized Linear Model Regression Results
## Dep. Variable:
                           Freq
                                No. Observations:
                                                            16
## Model:
                            GLM
                                Df Residuals:
                                                             9
## Model Family:
                         Poisson
                                Df Model:
                                                             6
## Link Function:
                            Log
                                Scale:
                                                         1.0000
## Method:
                           IRLS
                                Log-Likelihood:
                                                        -113.52
                  Mon, 03 Nov 2025
## Date:
                                Deviance:
                                                         146.44
## Time:
                                Pearson chi2:
                        18:12:23
                                                           138.
## No. Iterations:
                                Pseudo R-squ. (CS):
                                                          1.000
## Covariance Type:
                       nonrobust
[0.025
                                                           0.975]
                       std err
                                          P>|z|
                         0.111
                                33.191
## Intercept
               3.6693
                                          0.000
                                                  3.453
                                                            3.886
                               1.238
## Hair[T.Blond]
               0.1621
                         0.131
                                          0.216
                                                  -0.094
                                                            0.419
## Hair[T.Brown]
               0.9739
                                8.623
                                         0.000
                                                  0.752
                         0.113
                                                           1.195
               -0.4195
## Hair[T.Red]
                         0.153
                                -2.745
                                         0.006
                                                  -0.719
                                                           -0.120
## Eye[T.Brown]
               0.0230
                                 0.240
                         0.096
                                          0.811
                                                  -0.165
                                                            0.211
## Eye[T.Green]
               -1.2118
                         0.142
                                -8.510
                                          0.000
                                                  -1.491
                                                           -0.933
## Eye[T.Hazel]
               -0.8380
                         0.124
                                -6.752
                                          0.000
                                                  -1.081
                                                           -0.595
## """
```

• A deviance value of $X^2 = 146.44$ with df = 9 shows that there is very clear significance and we reject the null hypothesis of independence between hair and eye color.



np.float64(0.0)

6.4 Expected values and standardized residuals

- We also want to look at expected values and standardized (studentized) residuals.
- The null hypothesis predicts $e^{3.67+0.02} = 40.1$ with brown eyes and black hair, but we have observed 68.
- This is significantly too many, since the standardized residual is 6.1.
- The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is significantly too few, since the standardized residual is -8.3.

```
HairEye['fitted'] = model.fittedvalues
HairEye['resid'] = model.get_influence().resid_studentized
HairEye
```

```
##
         Eye
               Hair
                      Freq
                                 fitted
                                            resid
## 0
        Blue
                        20
                              39.222973 -4.253816
              Black
## 1
        Blue
              Blond
                        94
                              46.123311 9.967550
        Blue
## 2
              Brown
                             103.868243 -3.397883
                        84
                        17
## 3
        Blue
                 Red
                              25.785473 -2.311052
                        68
                              40.135135 6.136520
## 4
       Brown
              Black
## 5
       Brown
              Blond
                         7
                              47.195946 -8.328248
##
   6
       Brown
              Brown
                       119
                            106.283784 2.164282
##
  7
                              26.385135 -0.100824
       Brown
                 Red
                        26
## 8
       Green
              Black
                         5
                              11.675676 -2.287896
## 9
       Green
                              13.729730 0.732023
              Blond
                        16
## 10
       Green
              Brown
                        29
                             30.918919 -0.508263
```

```
## 11
       Green
                        14
                              7.675676 2.576569
                 Red
## 12
       Hazel
              Black
                        15
                             16.966216 -0.575026
       Hazel
              Blond
                        10
                             19.951014 -2.737977
                             44.929054
                        54
                                         2.050216
  14
       Hazel
              Brown
   15
       Hazel
                 Red
                        14
                             11.153716
                                         0.989512
```

7 Introduction to logistic regression

7.1 Binary response

- We consider a binary response y with outcome 1 or 0. This might be a code indicating whether a person is able or unable to perform a given task.
- Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
- We shall study models for

$$P(y = 1 \mid x)$$

i.e. the probability that a person of age x is able to complete the task.

• We shall see methods for determining whether or not age actually influences the probability, i.e. is y independent of x?

7.2 A linear model

$$P(y = 1 \mid x) = \alpha + \beta x$$

is simple, but often inappropriate. If β is positive and x sufficiently large, then the probability exceeds 1.

8 Simple logistic regression

8.1 Logistic model

Instead we consider the **odds** that the person is able to complete the task

$$\mathtt{Odds}(y=1\,|\,x) = \frac{P(y=1\,|\,x)}{P(y=0\,|\,x)} = \frac{P(y=1\,|\,x)}{1-P(y=1\,|\,x)}$$

which can have any positive value.

The logistic model is defined as:

$$\operatorname{logit}(P(y=1\,|\,x)) = \log(\operatorname{Odds}(y=1\,|\,x)) = \alpha + \beta x$$

The function $logit(p) = log(\frac{p}{1-p})$ - i.e. log of odds - is termed the logistic transformation.

Remark that log odds can be any number, where zero corresponds to $P(y=1 \mid x) = 0.5$. Solving $\alpha + \beta x = 0$ shows that at age $x_0 = -\alpha/\beta$ you have fifty-fifty chance of solving the task.

8.2 Logistic transformation

```
import numpy as np
from scipy.special import logit, expit

p = np.arange(0.1, 1.0, 0.2) # stop is exclusive, so use 1.0
p
```

```
## array([0.1, 0.3, 0.5, 0.7, 0.9])
```

```
1 = logit(p)
1.round(3)

## array([-2.197, -0.847, 0. , 0.847, 2.197])
expit(1)
```

array([0.1, 0.3, 0.5, 0.7, 0.9])

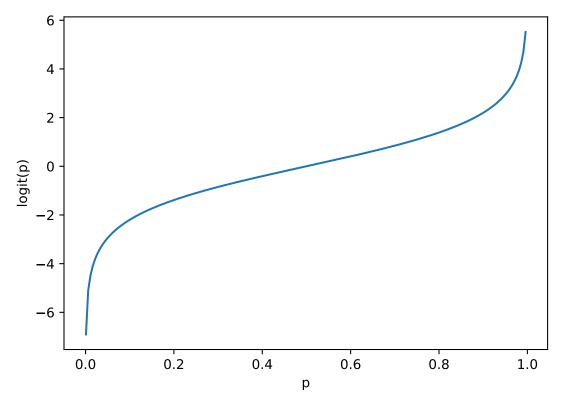
• The inverse logistic transformation <code>expit()</code> applied to the transformed values can recover the original probabilities:

Plot of logistic function and inverse logistic

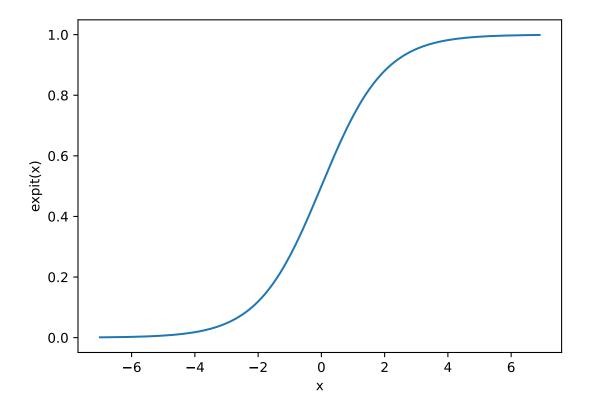
```
import matplotlib.pyplot as plt

p = np.arange(0.001, 0.999, 0.005)

fit = plt.plot(p, logit(p), label='logit(p)')
plt.xlabel('p')
plt.ylabel('logit(p)')
plt.show()
```



```
x = np.arange(-7, 7, 0.1)
fig = plt.plot(x, expit(x), label='inverse logit (expit)')
plt.xlabel('x')
plt.ylabel('expit(x)')
```



8.3 Odds-ratio

Interpretation of β :

What happens to odds, if we increase age by 1 year?

Consider the so-called **odds-ratio**:

$$\frac{\mathtt{Odds}(y=1\,|\,x+1)}{\mathtt{Odds}(y=1\,|\,x)} = \frac{\exp(\alpha+\beta(x+1))}{\exp(\alpha+\beta x)} = \exp(\beta)$$

where we see, that $\exp(\beta)$ equals the odds for age x+1 relative to odds at age x.

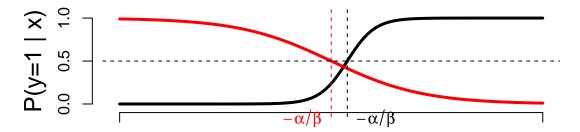
This means that when age increase by 1 year, then the relative change

$$\frac{\exp(\alpha + \beta(x+1)) - \exp(\alpha + \beta x)}{\exp(\alpha + \beta x)}$$

in odds is given by $100(\exp(\beta) - 1)\%$.

8.4 Simple logistic regression

Logistic curves



Χ

Examples of logistic curves for P(y=1|x). The black curve has a positive β -value (=10), whereas the red has a negative β (=-3).

In addition we note that:

- Increasing the absolute value of β yields a steeper curve.
- When $P(y=1 \mid x) = \frac{1}{2}$ then logit is zero, i.e. $\alpha + \beta x = 0$.

This means that at age $x = -\frac{\alpha}{\beta}$ you have 50% chance to perform the task.

8.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

• Data structure: For each level of income, we let n denote the number of persons with that income, and credit how many of these that carries a credit card.

```
import pandas as pd

creInc = pd.read_csv("https://asta.math.aau.dk/datasets?file=income-credit.csv", sep=',')
creInc.head(6)
```

```
##
                     credit
       Income
                 n
## 0
           12
                 1
                           0
## 1
           13
                 1
## 2
           14
                 8
                           2
                           2
## 3
           15
                14
## 4
           16
                 9
                           0
           17
                 8
## 5
```

8.6 Example: Fitting the model

```
## <class 'statsmodels.iolib.summary.Summary'>
## """
                    Generalized Linear Model Regression Results
##
  ______
## Dep. Variable:
                  ['credit', 'I(n - credit)']
                                          No. Observations:
                                                                        24
## Model:
                                                                        22
                                          Df Residuals:
## Model Family:
                                          Df Model:
                                 Binomial
                                                                         1
## Link Function:
                                    Logit
                                          Scale:
                                                                     1.0000
## Method:
                                     IRLS
                                          Log-Likelihood:
                                                                    -27.417
## Date:
                           Mon, 03 Nov 2025
                                          Deviance:
                                                                     39.276
## Time:
                                 18:12:26
                                          Pearson chi2:
                                                                       32.3
                                          Pseudo R-squ. (CS):
                                                                     0.6698
## No. Iterations:
## Covariance Type:
                                 nonrobust
##
                coef
                                          P>|z|
                                                    [0.025
                       std err
                                                    -4.910
              -3.5179
                        0.710
                                 -4.953
                                          0.000
                                                              -2.126
## Intercept
## Income
              0.1054
                        0.026
                                 4.030
                                          0.000
                                                    0.054
                                                              0.157
```

- The response has the form credit + I(n credit).
- We need to use the function glm (generalized linear model).
- The argument family=sm.families.Binomial() tells the function that the data has binomial variation. Leaving out this argument will lead Python to believe that data follows a normal distribution (linear regression).
- The params extracts the coefficients (estimates of parameters) from the model:

modelFit.params

Intercept -3.517947 ## Income 0.105409 ## dtype: float64

8.7 Test of no effect

modelFit.summary2().tables[1]

```
## Coef. Std.Err. z P>|z| [0.025 0.975]
## Intercept -3.517947 0.710336 -4.952513 7.326117e-07 -4.910179 -2.125714
## Income 0.105409 0.026157 4.029788 5.582714e-05 0.054141 0.156677
```

Our model for dependence of odds of having a credit card related to income(x) is

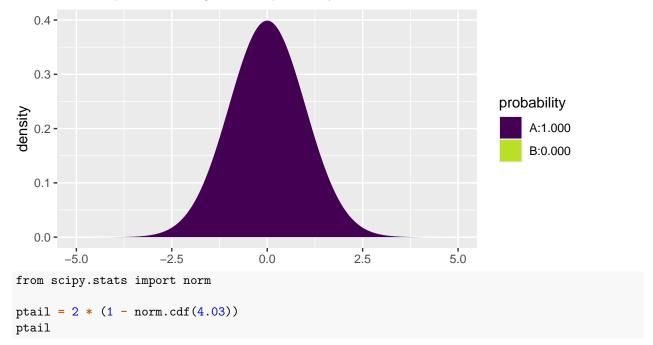
$$logit(x) = \alpha + \beta x$$

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

$$H_0: \beta = 0$$

with the alternative $\beta \neq 0$. Inspecting the summary reveals that $\hat{\beta} = 0.1054$ is more than 4 standard errors away from zero.

With a z-score equal to 4.03 we get the tail probability



np.float64(5.577685288105094e-05)

Which is very significant - as reflected by the p-value.

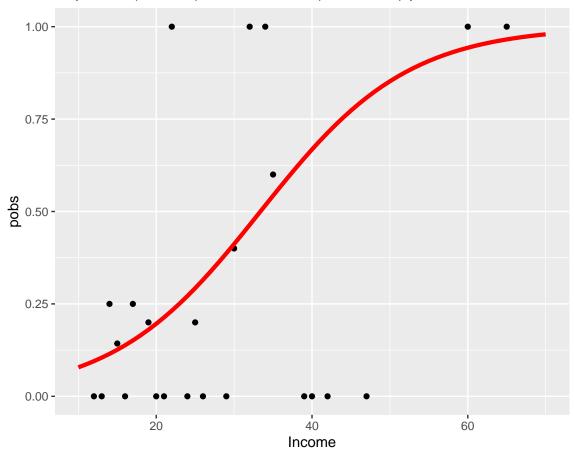
8.8 Confidence interval for odds ratio

From the summary:

- $\hat{\beta} = 0.10541$ and hence $\exp(\hat{\beta}) 1 = 0.11$. If income increases by 1000 euro, then odds increases by 11%.
- Standard error on $\hat{\beta}$ is 0.02616 and hence a 95% confidence interval for log-odds ratio is $\hat{\beta} \pm 1.96 \times 0.02616 = (0.054; 0, 157)$.
- Corresponding interval for odds ratio: $\exp((0.054; 0, 157)) = (1.056; 1.170)$, i.e. the increase in odds is with confidence 95% between 5.6% and 17%.

8.9 Plot of model predictions against actual data

Ignoring unknown labels:
* ylab : "Probability of credit card"
* xlab : "Income"



- Tendency is fairly clear and very significant.
- Due to low sample size at some income levels, the deviations are quite large.

9 Multiple logistic regression

9.1 Several numeric predictors

We generalize the model to the case, where we have k predictors x_1, x_2, \ldots, x_k . Where some might be dummies for a factor.

$$logit(P(y = 1 | x_1, x_2, ..., x_k)) = \alpha + \beta_1 x_1 + ... + \beta_k x_k$$

Interpretation of β -values is unaltered: If we fix x_2, \ldots, x_k and increase x_1 by one unit, then the relative change in odds is given by $\exp(\beta_1) - 1$.

9.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in the breast.

- Nine clinical variables with a score between 0 and 10.
- The binary variable Class with levels benign/malignant.
- By default Python orders the levels lexicografically and chooses the first level as reference (y = 0). Hence benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

```
BC = pd.read_csv("https://asta.math.aau.dk/datasets?file=BCO.dat", sep=' ')
BC.head(6)
##
      nuclei
             cromatin Size.low Size.medium
                                                Shape.low
                                                                Class
## 0
           1
                     3
                             True
                                         False
                                                      True
                                                               benign
                     3
## 1
          10
                            False
                                          True
                                                     False
                                                               benign
## 2
           2
                     3
                                         False
                             True
                                                      True
                                                               benign
## 3
           4
                     3
                            False
                                         False
                                                               benign
                                                     False
                     3
## 4
           1
                             True
                                         False
                                                      True
                                                               benign
## 5
          10
                     9
                            False
                                         False
                                                     False
                                                            malignant
```

9.3 Global test of no effects

First we fit the model $\mathtt{mainEffects}$ with main effect of all predictors - remember the notation \sim . for all predictors. Then we fit the model $\mathtt{noEffects}$ with no predictors.

```
BC['Class_numeric'] = (BC['Class'] == 'malignant').astype(int)
BC = BC.rename(columns={
    'Size.low': 'Size_low',
    'Size.medium': 'Size_medium',
    'Shape.low': 'Shape_low'
})
mainEffects = smf.glm('Class_numeric ~ nuclei + cromatin + Size_low + Size_medium + Shape_low', data=BC
noEffects = smf.glm('Class_numeric ~ 1', data=BC, family=sm.families.Binomial()).fit()
```

First we want to test, whether there is any effect of the predictors, i.e the null hypothesis

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$$

9.4 Example

We test the hypothesis that all $\beta_i = 0$ using a χ^2 -test.

```
from scipy.stats import chi2

ll_noEffects = noEffects.llf

ll_mainEffects = mainEffects.llf

test_stat = -2 * (ll_noEffects - ll_mainEffects)

df = mainEffects.df_model - noEffects.df_model

p_value = 1 - chi2.cdf(test_stat, df)

print(f"Test statistic: {test_stat}")

## Test statistic: 749.2859276261477

print(f"Degrees of freedom: {df}")

## Degrees of freedom: 5

print(f"P-value: {p_value}")

## P-value: 0.0
```

mainEffects is a much better model.

The test statistic is the Deviance (749.29), which should be small.

It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis) degrees of freedom.

The 95%-critical value for the $\chi^2(5)$ distribution is 11.07 and the p-value is in practice zero.

9.5 Test of influence of a given predictor

```
mainEffects.summary2().tables[1].round(4)
```

```
##
                         Coef.
                                Std.Err.
                                                    P>|z|
                                                           [0.025
                                                                   0.975]
                                                z
                       -0.7090
## Intercept
                                  0.8570 -0.8274
                                                   0.4080 - 2.3887
                                                                   0.9706
## Size_low[T.True]
                       -3.6154
                                  0.8081 - 4.4739
                                                   0.0000 -5.1992 -2.0315
## Size_medium[T.True] -2.3773
                                  0.7188 -3.3073
                                                   0.0009 -3.7861 -0.9685
## Shape_low[T.True]
                       -2.1490
                                  0.6054 -3.5496
                                                   0.0004 -3.3356 -0.9624
## nuclei
                        0.4403
                                  0.0823
                                                   0.0000 0.2790 0.6017
                                          5.3483
## cromatin
                        0.5058
                                  0.1444
                                          3.5025
                                                   0.0005 0.2228 0.7888
```

For each predictor p can we test the hypothesis:

$$H_0: \ \beta_p = 0$$

• Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by the p-values.

9.6 Prediction and classification

```
BC['pred'] = mainEffects.predict()
```

- We add the column pred to our dataframe BC.
- pred is the final model's estimate of the probability of malignant.

```
BC[['Class', 'pred']].head(6)
```

```
##
          Class
                     pred
## 0
         benign 0.010817
## 1
         benign 0.944507
         benign
                0.016702
## 3
         benign
                 0.928883
         benign
                 0.010817
## 5
     malignant 0.999738
```

Not good for patients 2 and 4.

We may classify by round(BC\$pred):

- 0 to denote benign (probability BC\$pred less than 0.5)
- 1 to denote malignant (probability BC\$pred more than 0.5)

```
BC['pred_class'] = np.where(BC['pred'] > 0.5, "pred_malignant", "pred_benign")
tab = pd.crosstab(BC['Class'], BC['pred_class'])
tab
```

```
## pred_class pred_benign pred_malignant
## Class
## benign 433 11
## malignant 11 228
```

11+11=22 patients are misclassified.

```
malignant_preds = BC.loc[BC['Class'] == 'malignant', 'pred']
malignant_preds_sorted = malignant_preds.sort_values().head(5)
malignant_preds_sorted
```

```
## 440 0.034703
## 216 0.036964
## 63 0.088544
## 474 0.189870
## 55 0.205024
## Name: pred, dtype: float64
```

There is a malignant woman with a predicted probability of malignancy, which is only 3.5%.

If we assign all women with predicted probability of malignancy above 5% to further investigation, then we only miss two malignant.

```
BC['pred_class'] = np.where(BC['pred'] > 0.05, "pred_malignant", "pred_benign")
tab = pd.crosstab(BC['Class'], BC['pred_class'])
tab
```

```
## pred_class pred_benign pred_malignant
## Class
## benign 394 50
## malignant 2 237
```

The expense is that the number of false positive increases from 11 to 50.

```
BC['pred_class'] = np.where(BC['pred'] > 0.1, "pred_malignant", "pred_benign")
tab = pd.crosstab(BC['Class'], BC['pred_class'])
tab
```

```
## pred_class pred_benign pred_malignant
## Class
## benign 417 27
## malignant 3 236
```

- If we instead set the alarm to 10%, then the number of false positives decreases from 50 to 27.
- But at the expense of 3 false negative (instead of 2 as before).