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1 Contingency tables

1.1 A contingency table

o We return to the dataset popularKids, where we study association between 2 factors: Goals and
Urban.Rural.

e Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).

import pandas as pd

popKids
popKids

pd.read_csv("https://asta.math.aau.dk/datasets?file=PopularKids.dat", sep="\t")
popKids.rename (columns={'Urban/Rural': 'Urban.Rural'})



tab_totals = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'], margins=True)
tab_totals

## Goals Grades Popular Sports All
## Urban.Rural

## Rural 57 50 42 149
## Suburban 87 42 22 1561
## Urban 103 49 26 178
## All 247 141 90 478

1.1.1 A conditional distribution

e Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural,
i.e. the sum in each row of the table is 100 (up to rounding):

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'], margins=False)
tab_pct = (tab.div(tab.sum(axis=1), axis=0) * 100)

tab_pct['Al11'] = tab_pct.sum(axis=1)

tab_pct.round ()

## Goals Grades Popular Sports A1l
## Urban.Rural

## Rural 38.0 34.0 28.0 100.0
## Suburban 58.0 28.0 15.0 100.0
## Urban 58.0 28.0 15.0 100.0

e Here we will talk about the conditional distribution of Goals given Urban.Rural.
e An important question could be:
— Are the goals of the kids different when they come from urban, suburban or rural areas? l.e. are
the rows in the table significantly different?
o There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

e Recall, that two factors are independent, when there is no difference between the population’s
distributions of one factor given the levels of the other factor.

e Otherwise the factors are said to be dependent.

o If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals

## Urban.Rural Grades Popular Sports
## Rural 500 300 200
## Suburban 500 300 200
## Urban 500 300 200

e Then the factors Goals and Urban.Rural are independent.

e We take a sample and “measure” the factors F} and F. E.g. Goals and Urban.Rural for a random
child.

o The hypothesis of interest today is:

Hy : Fy and F; are independent, H, : F} and F5; are dependent.

2.2 The Chi-squared test for independence

e The relative frequencies in the sample gives an estimate of the unconditional distribution of Goals:



tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
n = tab.values.sum()
pctGoals = (tab.sum(axis=0) / n * 100).round(1)

pctGoals
## Goals
## Grades 51.7
## Popular 29.5
## Sports 18.8

## dtype: float64

o If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.
e The corresponding expected counts in the sample are then:

## Goals

## Urban.Rural Grades Popular Sports Sum

## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)
2.3 Calculation of expected table

## Goals

## Urban.Rural Grades Popular Sports Sum

## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

o We note that
— The relative frequency for a given column is columnTotal divided by tableTotal. For example
Grades, which is % =51.7%.
— The expected value in a given cell in the table is then the cell’s relative column frequency multiplied
by the cell’s rowTotal. For example Rural and Grades: 149 x 51.7% = 77.0.
e This can be summarized to:
— The expected value in a cell is the product of the cell’s rowTotal and columnTotal divided by

tableTotal.

2.4 Chi-squared (\?) test statistic

« We have an observed table:

tab

## Goals Grades Popular Sports
## Urban.Rural

## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

e And an expected table, if Hy is true:

#i# Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 44.0 28.1 149.0



## Suburban 78.0 44.5 28.4 151.0
## Urban 92.0 52.5 33.5 178.0
## Sum 247.0 141.0 90.0 478.0

o If these tables are “far from each other”, then we reject Hy. We want to measure the distance via the
Chi-squared test statistic:
- X2=3% (70";7)06)2 Sum over all cells in the table
— fo is the freq;iency in a cell in the observed table
— fe is the corresponding frequency in the expected table.
o We have:
o (57— 77)2 (26 — 33.5)2

LD =18.

X

e Is this a large distance??

2.5 y’-test template.

e We want to test the hypothesis Hy of independence in a table with r rows and ¢ columns:
— We take a sample and calculate X02bS - the observed value of the test statistic.
— p-value: Assume Hj is true. What is then the chance of obtaining a larger X? than ngs, if we
repeat the experiment?
o This can be approximated by the y2-distribution with df = (r — 1)(c — 1) degrees of freedom.
o For Goals and Urban.Rural we have r = ¢ = 3, i.e. df =4 and X2, = 18.8, so the p-value is:
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from scipy.stats import chi2

1 - chi2.cdf(18.8, 4)

## np.float64(0.0008603302817890013)

e There is clearly a significant association between Goals and Urban.Rural.



2.6 Perform the test using software

e All of the above calculations can be obtained as follows:

import statsmodels.api as sm

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
chisqtab = sm.stats.Table(tab)
chisqtab.fittedvalues

## Goals Grades Popular Sports
## Urban.Rural

## Rural 76.993724 43.951883 28.054393
## Suburban 78.027197 44.541841 28.430962
## Urban 91.979079 52.506276 33.514644

print(chisqtab.test_nominal_association())

## df 4
## pvalue 0.0008496551610398528
## statistic 18.827626180696555

e The frequency data can also be put directly into a matrix.

import numpy as np

data = np.array([

57, 50, 42,

87, 42, 22,

103, 49, 26]).reshape(3,3)
tab = pd.DataFrame(data,

index=["Rural", "Suburban", "Urban"],
columns=["Grades", "Popular", "Sports"])
tab
## Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

chisqtab = sm.stats.Table(tab)
chisqtab.fittedvalues

## Grades Popular Sports
## Rural 76.993724 43.951883 28.054393
## Suburban 78.027197 44.541841 28.430962
## Urban 91.979079 52.506276 33.514644

print(chisqtab.test_nominal_association())

## df 4
## pvalue 0.0008496551610398528
## statistic 18.827626180696555



3 The y’-distribution

3.1 The Y2-distribution

o The x2-distribution with df degrees of freedom:
— Is never negative.
— Has mean p = df
— Has standard deviation o = /2df
— Is skewed to the right, but approaches a normal distribution when df grows.
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4 Agresti - Summary

4.1 Summary

« For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be
fe>5.
e Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

1. Assumptions: Two categorical variables, random sampling, f, = 5 in all cells
2. Hypotheses: Hy: Statistical independence of variables

H,: Statistical dependence of variables
(fo — f;.')z, shere = (Row}}otal?(Coluny’] total)
, otal sample size
4. P-value: P = right-tail probability above observed y? value,

for chi-squared distribution with df = (r — 1)(¢c — 1)

5. Conclusion: Report P-value

If decision needed, reject Hy at a-level if P = a

3. Test statistic: y2 = 3




5 Standardized residuals

5.1 Residual analysis

o If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
e In a given cell in the table, f, — f. is the deviation between data and the expected values under the

null hypothesis.
o We assume that f, > 5.
o If Hy is true, then the standard error of f, — f. is given by

se = v/ f.(1 — rowProportion)(1 — columnProportion)

e The corresponding z-score
fo - fe
se
should in 95% of the cells be between £2. Values above 3 or below -3 should not appear.

z =

o In popKids table cell Rural and Grade we got f. = 77.0 and f, = 57. Here columnProportion= 51.7%

and rowProportion= 149/478 = 31.2%.

e We can then calculate
57 — 77

© T /T 0501 _ 0.312)

=-3.95

e Compared to the null hypothesis there are way too few rural kids who find grades important.
o In summary: The standardized residuals allow for cell-by-cell (f. vs f,) comparision.

5.2 Residual analysis

e We can calculate the standardized residuals:

import statsmodels.api as sm

tab = pd.crosstab(popKids['Urban.Rural'], popKids['Goals'])
table = sm.stats.Table(tab)
table.standardized_resids

## Goals Grades  Popular Sports
## Urban.Rural

## Rural -3.950845 1.309623 3.522500
## Suburban 1.766661 -0.548407 -1.618521
## Urban 2.086578 -0.727433 -1.818622

5.3 Why not just use two-way ANOVA ?

e number of persons in different categories are not normally distributed
e variance typically larger the larger expected frequency

o underlying data are discrete (for each person, which column and row category does person belong to)

o these discrete variables are naturally modelled in terms of probabilies for different categories
e therefore hypothesis of independence becomes natural null hypothesis

e it is possible to model table frequencies as dependent variable using a regression model but then we

need the framework of generalized linear models (see last slides)

Contingency table:

o counts of how many individuals fall within different categories for two (or more) categorical variables

Two-way ANOVA:

o a number of individuals/objects/. .. available for each combination of two categorical variables

o mnext a continuous variable is measured for each individual or object (this becomes the response variable)



6 Models for table data

6.1 Example

o We will study the dataset HairEyeColor.

HairEyeColor = pd.read_csv("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt", sep="\t")
HairEyeColor.head(6)

## Hair Eye Sex Freq
## 0 Black Brown Male 32
## 1 Brown Brown Male 53
## 2 Red Brown Male 10
## 3 Blond Brown Male 3
## 4 Black Blue Male 11
## 5 Brown Blue Male 50

e Data is organized such that the variable Freq gives the frequency of each combination of the factors
Hair, Eye and Sex.

o For example: 32 observations are men with black hair and brown eyes.

o We are interested in the association between eye color and hair color ignoring the sex

o We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

HairEye = HairEyeColor.groupby(['Eye', 'Hair'], as_index=False)['Freq'].sum()
HairEye

## Eye Hair Freq
## 0 Blue Black 20
## 1 Blue Blond 94
## 2 Blue Brown 84
## 3 Blue Red 17
## 4 Brown Black 63
## 5 Brown Blond 7
## 6 Brown Brown 119
## 7 Brown Red 26
## 8 Green Black 5
## 9 Green Blond 16
## 10 Green Brown 29
## 11 Green Red 14
## 12 Hazel Black 15
## 13 Hazel Blond 10
## 14 Hazel Brown 54
## 15 Hazel Red 14

6.2 Model specification

o We can write down a model for (the logarithm of) the expected frequencies by using dummy variables
Zels Ze2, Ze3 and Zp1, Zh2, Zh3
o To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

log(fe) = oo+ Beizer + Beazea + Beszes + Prizr1 + Pr2zne + Brazns.

e Note that we haven’t included an interaction term, which is this case implies, that we assume indepen-
dence between Eye and Hair in the model.

« Since our response variable now is a count it is no longer a linear model as we have been used to (linear
regression).

o Instead it is a so-called generalized linear model and the relevant command is glm.



6.3 Model specification
import statsmodels.formula.api as smf
model = smf.glm('Freq ~ Hair + Eye', data=HairEye, family=sm.families.Poisson()).fit()

o The family argument (Poisson) ensures that data are interpreted as discrete counts and not a continuous
variable.

model . summary ()

## <class 'statsmodels.iolib.summary.Summary'>

## o

## Generalized Linear Model Regression Results

##

## Dep. Variable: Freq No. Observations: 16

## Model: GLM Df Residuals: 9

## Model Family: Poisson  Df Model: 6

## Link Function: Log  Scale: 1.0000

## Method: IRLS Log-Likelihood: -113.52

## Date: Mon, 03 Nov 2025 Deviance: 146.44

## Time: 17:49:05  Pearson chi2: 138.

## No. Iterations: 5 Pseudo R-squ. (CS): 1.000

## Covariance Type: nonrobust

##

#it coef std err z P>|z| [0.025 0.975]
#H -
## Intercept 3.6693 0.111 33.191 0.000 3.453 3.886
## Hair[T.Blond] 0.1621 0.131 1.238 0.216 -0.094 0.419
## Hair [T.Brown] 0.9739 0.113 8.623 0.000 0.752 1.195
## Hair[T.Red] -0.4195 0.153 -2.745 0.006 -0.719 -0.120
## Eye[T.Brown] 0.0230 0.096 0.240 0.811 -0.165 0.211
## Eye[T.Green] -1.2118 0.142 -8.510 0.000 -1.491 -0.933
## Eye[T.Hazell -0.8380 0.124 -6.752 0.000 -1.081 -0.595
##

## o

o A deviance value of X? = 146.44 with df = 9 shows that there is very clear significance and we reject
the null hypothesis of independence between hair and eye color.
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1 - chi2.cdf(146.44, 9)

## np.float64(0.0)

6.4 Expected values and standardized residuals

o We also want to look at expected values and standardized (studentized) residuals.

3.67+0.02

e The null hypothesis predicts e = 40.1 with brown eyes and black hair, but we have observed 68.

e This is significantly too many, since the standardized residual is 6.1.

e The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is
significantly too few, since the standardized residual is -8.3.

HairEye['fitted'] = model.fittedvalues
HairEye['resid'] = model.get_influence() .resid_studentized

HairEye

## Eye Hair Freq fitted resid
## 0 Blue Black 20  39.222973 -4.253816
## 1 Blue Blond 94  46.123311 9.967550
## 2 Blue Brown 84 103.868243 -3.397883
## 3 Blue Red 17  25.785473 -2.311052
## 4 Brown Black 63 40.135135 6.136520
## 5 Brown Blond 7  47.195946 -8.328248
## 6 Brown Brown 119 106.283784 2.164282
## 7  Brown Red 26  26.385135 -0.100824
## 8 Green Black 5 11.675676 -2.287896
## 9 Green Blond 16 13.729730 0.732023
## 10 Green Brown 29 30.918919 -0.508263
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##
##
##
##
##

11
12
13
14
15

Green
Hazel
Hazel
Hazel
Hazel

Red
Black
Blond
Brown

Red

14
15
10
54
14

7.675676 2.576569
16.966216 -0.575026
19.951014 -2.737977
44.929054 2.050216
11.163716 0.989512
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