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1 The regression problem
1.1 Example

• We will study the dataset in Agresti Table 13.1 available as Income.txt on the course website. We
read in data in RStudio

import pandas as pd

Income = pd.read_csv("https://asta.math.aau.dk/datasets?file=Income.txt", sep='\t')

• We have a sample with measurements of 3 variables:
– y=income: Quantitative variable, which is yearly income. This will be our response.
– x=education: Quantitative predictor, which is the number of years of education.
– z=race: Explanatory factor with levels b(black), h(hispanic) and w(white).

• We always start with some graphics:
import seaborn as sns

p = sns.lmplot(x='educ', y='inc', hue='race', data=Income, ci=None)
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• An unclear picture, but a tendency to increasing income with increasing education.
• The trend lines for the three races are different. But is the difference significant? Or can the difference

be explained by sampling variation?
• Such a regression with both qualitative and quantitative predictors is called an analysis of covariance

(ANCOVA). When the model only contains qualitative predictors, the problem is known as analysis of
variance (ANOVA) which is the topic of the next lecture.

2 Dummy coding
2.1 Dummy coding

• First, we will look at the model without interaction, i.e. the effect of education is the same for all
races, which corresponds to parallel lines.

• We also have to introduce dummy coding of the factor z:

– z1 = 1 if race=b and zero otherwise
– z2 = 1 if race=h and zero otherwise

• This determines the regression model:

E(y|x, z) = α + βx + β1z1 + β2z2

which corresponds to parallel regressions lines for each race.

• w: (z1 = 0, z2 = 0) E(y|x) = α + βx
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• b: (z1 = 1, z2 = 0) E(y|x) = α + β1 + βx.

• h: (z1 = 0, z2 = 1) E(y|x) = α + β2 + βx.

• β1 is the difference in Intercept between black and white.

• β2 is the difference in Intercept between Hispanic and white.

2.2 Example
• We want to tell the software that we want race to be a factor (grouping variable) and we want w as

reference level for race (default is lexicographical ordering, i.e. (b, h, w) and b would then be the
reference):

Income['race'] = Income['race'].astype('category').cat.reorder_categories(
['w', 'b', 'h'],
ordered = True

)

• Then we use + in the model formula to only have additive effects of educ and race, i.e. a model without
interaction:

import statsmodels.formula.api as smf

model1 = smf.ols('inc ~ educ + race', data=Income).fit()
model1.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: inc R-squared: 0.462
## Model: OLS Adj. R-squared: 0.441
## No. Observations: 80 F-statistic: 21.75
## Covariance Type: nonrobust Prob (F-statistic): 2.85e-10
## ==============================================================================
## coef std err t P>|t| [0.025 0.975]
## ------------------------------------------------------------------------------
## Intercept -15.6635 8.412 -1.862 0.066 -32.418 1.091
## race[T.b] -10.8744 4.473 -2.431 0.017 -19.783 -1.966
## race[T.h] -4.9338 4.763 -1.036 0.304 -14.421 4.553
## educ 4.4317 0.619 7.158 0.000 3.199 5.665
## ==============================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• The common slope to educ is estimated to be β̂ = 4.4316685, with corresponding p-value=4.42 × 10−10

which is significantly different from zero.
• There is a clear positive effect of educ on income.
• The estimate for w-intercept is α̂ = −15.6635, which isn’t significantly different from zero if we test at

level 5% (this test is not really of interest).
• The difference between b- and w-intercept (raceb) is β̂1 = −10.8744, which is significant with

p-value=1.74%.
• There is no significant difference between h- and w-intercept.
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2.3 Example: Prediction equations

model1.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: inc R-squared: 0.462
## Model: OLS Adj. R-squared: 0.441
## No. Observations: 80 F-statistic: 21.75
## Covariance Type: nonrobust Prob (F-statistic): 2.85e-10
## ==============================================================================
## coef std err t P>|t| [0.025 0.975]
## ------------------------------------------------------------------------------
## Intercept -15.6635 8.412 -1.862 0.066 -32.418 1.091
## race[T.b] -10.8744 4.473 -2.431 0.017 -19.783 -1.966
## race[T.h] -4.9338 4.763 -1.036 0.304 -14.421 4.553
## educ 4.4317 0.619 7.158 0.000 3.199 5.665
## ==============================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• Reference/baseline group (white):
ŷ = −15.66 + 4.43x

• Black:
ŷ = −15.66 − 10.87 + 4.43x = −26.54 + 4.43x

• Hispanic:
ŷ = −15.66 − 4.93 + 4.43x = −20.60 + 4.43x

2.4 Example: Plot

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

coef = model1.params
educ_vals = np.linspace(Income['educ'].min(), Income['educ'].max(), 100)

plt.figure(figsize=(8,6))
sns.scatterplot(x='educ', y='inc', hue='race', data=Income)

for r in Income['race'].cat.categories:
intercept = coef['Intercept'] + coef.get(f'race[T.{r}]', 0)
slope = coef['educ']
plt.plot(educ_vals, intercept + slope * educ_vals, label=f'{r} line')

plt.xlabel("Education")
plt.ylabel("Income")
plt.legend()
plt.show()
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2.5 Agresti – summary

3 Model with interaction
3.1 Interaction

• In the following we will expand the model to include interaction between the effects of race and education
on income. Before proceeding, let us recall what interaction means (and doesn’t mean) in this context:

• Interaction between the effects of race and education on income does not mean that the values of
education and race themselves are related or affect each other.

• Interaction between the effects of race and education on income means that the relationship between
education and income depends on the value of race. I.e. for each fixed value of race the slope of the line
relating education and income may have a different value.

• Often we just refer to this as “interaction between education and race” when it really should read
“interaction between the effects of race and education on income”.

3.2 Interaction
• We will expand the regression model, so we include interaction between x and z1 respectively z2:

E(y|x, z) = α + βx + β1z1 + β2z2 + β3z1x + β4z2x.

• This yields a regression line for each race:
• w (z1 = 0, z2 = 0): E(y|x) = α + βx
• b (z1 = 1, z2 = 0): E(y|x) = α + β1 + (β + β3)x.
• h (z1 = 0, z2 = 1): E(y|x) = α + β2 + (β + β4)x.
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• β1 is the difference in Intercept between black and white, while β3 is the difference in slope
between black and white.

• β2 is the difference inIntercept between Hispanic and white, while β4 is the difference in slope
between Hispanic and white.

3.3 Example: Prediction equations
• When we use * in the model formula we include interaction between educ and race:

model2 = smf.ols('inc ~ educ * race', data=Income).fit()
model2.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: inc R-squared: 0.482
## Model: OLS Adj. R-squared: 0.448
## No. Observations: 80 F-statistic: 13.80
## Covariance Type: nonrobust Prob (F-statistic): 1.62e-09
## ==================================================================================
## coef std err t P>|t| [0.025 0.975]
## ----------------------------------------------------------------------------------
## Intercept -25.8688 10.498 -2.464 0.016 -46.787 -4.951
## race[T.b] 19.3333 18.293 1.057 0.294 -17.116 55.782
## race[T.h] 9.2640 24.280 0.382 0.704 -39.114 57.642
## educ 5.2095 0.783 6.655 0.000 3.650 6.769
## educ:race[T.b] -2.4107 1.418 -1.700 0.093 -5.236 0.414
## educ:race[T.h] -1.1208 2.006 -0.559 0.578 -5.118 2.876
## ==================================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• Reference/baseline group (white):
ŷ = −25.87 + 5.21x

• Black:
ŷ = −25.87 + 19.33 + (5.21 − 2.41)x = −6.54 + 2.80x

• Hispanic:
ŷ = −25.87 + 9.26 + (5.21 − 1.12)x = −16.60 + 4.09x

3.4 Example: Individual tests

model2.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: inc R-squared: 0.482
## Model: OLS Adj. R-squared: 0.448
## No. Observations: 80 F-statistic: 13.80
## Covariance Type: nonrobust Prob (F-statistic): 1.62e-09
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## ==================================================================================
## coef std err t P>|t| [0.025 0.975]
## ----------------------------------------------------------------------------------
## Intercept -25.8688 10.498 -2.464 0.016 -46.787 -4.951
## race[T.b] 19.3333 18.293 1.057 0.294 -17.116 55.782
## race[T.h] 9.2640 24.280 0.382 0.704 -39.114 57.642
## educ 5.2095 0.783 6.655 0.000 3.650 6.769
## educ:race[T.b] -2.4107 1.418 -1.700 0.093 -5.236 0.414
## educ:race[T.h] -1.1208 2.006 -0.559 0.578 -5.118 2.876
## ==================================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• The difference in slope between b and w (educ:raceb) is estimated to β̂3 = −2.4107. With p-
value=9.33% there is no significant difference.

• Furthermore, there isn’t any significant difference of slope between h and w. In other words there is
probably not interaction between educ and race.

p = sns.lmplot(x='educ', y='inc', hue='race', data=Income, ci=None)
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4 Test for no interaction
4.1 Test for no interaction

model1.rsquared

## np.float64(0.46199055232513464)

model2.rsquared

## np.float64(0.4824821580587537)

• Is model2 significantly better than model1? I.e. is R2 significantly higher for model2?

4.2 Hypothesis and test statistic
• The simpler model1 is obtained from the more complicated model2 by setting β3 = 0 and β4 = 0, so the

null hypothesis “the simpler additive model describes data sufficiently well compared to the complicated
interaction model” is really the simple mathematical hypothesis:

H0 : β3 = 0, β4 = 0.

• We will look at the difference between R2 for the two models, but as before (for multiple linear regression)
we have to convert this to an F statistic which we can then calculate a p-value for.

• Formula for Fobs (no need to learn this by heart):

Fobs = (R2
2 − R2

1)/(df1 − df2)
(1 − R2

2)/df2

where df1 and df2 are n minus the number of model parameters for the two models (i.e. 80-4=76 and
80-6=74 in our case).

• The formula for Fobs can be rewritten in terms of sums of squared errors (SSE) for each model (no
need to memorize it):

Fobs = (SSE1 − SSE2)/(df1 − df2)
(SSE2)/df2

.

• In the literature SSE is sometimes denoted by RSS for Residual Sums of Squares; i.e SSE = RSS.

4.3 Test for no interaction in Python
• In Python the calculations are done using anova_lm:

from statsmodels.stats.anova import anova_lm

anova_lm(model1, model2)

## df_resid ssr df_diff ss_diff F Pr(>F)
## 0 76.0 18164.248072 0.0 NaN NaN NaN
## 1 74.0 17472.411504 2.0 691.836568 1.46505 0.23769

• The F-test for dropping the interaction educ:race has F-value=1.465, which in no way is significant
with p-value=23.77%.

5 Hierarchy of models
5.1 Hierarchy of models

• Interaction: The most general model with main effects educ and race and interaction educ:race:
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Interaction = smf.ols('inc ~ educ * race', data=Income).fit()

• MainEffects: The model where there are additive effects of educ and race.
MainEffects = smf.ols('inc ~ educ + race', data=Income).fit()

• educEff: Model where there only is an effect of educ (simple lin. reg.).
educEff = smf.ols('inc ~ educ', data=Income).fit()

• raceEff: Model where there only is an effect of race (a different mean for each group – more on this
in the ANOVA lecture).

raceEff = smf.ols('inc ~ race', data=Income).fit()

• We can, corresponding to Agresti Table 13.10, make F-tests for 3 pairwise comparisons of models.

5.2 Example
• Comparing MainEffects and Interaction is what we have already done.

anova_lm(MainEffects, Interaction)

## df_resid ssr df_diff ss_diff F Pr(>F)
## 0 76.0 18164.248072 0.0 NaN NaN NaN
## 1 74.0 17472.411504 2.0 691.836568 1.46505 0.23769

• We recognize F = 1.465 with p-value=23.77%, i.e. model2 isn’t significantly better than model1. So no
educ:race interaction.

• In the same manner we can compare educEff and MainEffects. I.e. we investigate whether the effect
of race can be left out.

anova_lm(educEff, MainEffects)

## df_resid ssr df_diff ss_diff F Pr(>F)
## 0 78.0 19624.832018 0.0 NaN NaN NaN
## 1 76.0 18164.248072 2.0 1460.583947 3.055573 0.052922

• If any, the effect of race is weak with p-value=5.292%.

• Finally, we compare raceEff and MainEffects. Clearly educ cannot be left out (P-value=4.422×10−10).
anova_lm(raceEff, MainEffects)

## df_resid ssr df_diff ss_diff F Pr(>F)
## 0 77.0 30409.480000 0.0 NaN NaN NaN
## 1 76.0 18164.248072 1.0 12245.231928 51.23458 4.422192e-10

5.3 Example
• The methods generalize to models with more than 2 predictors.
• We return to the dataset Ericksen, where we study the response crime:

Ericksen = pd.read_csv("https://asta.math.aau.dk/datasets?file=Ericksen.txt", sep='\t')
model = smf.ols('crime ~ city * highschool + city * poverty', data=Ericksen).fit()

• The variables are:
– crime: Quantitative variable
– city: city or state
– highschool: Quantitative variable
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– poverty: Quantitative variable
• The model has 3 predictors with main effects and includes

– interaction between city and highschool
– interaction between city and poverty.

model.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: crime R-squared: 0.658
## Model: OLS Adj. R-squared: 0.629
## No. Observations: 66 F-statistic: 23.06
## Covariance Type: nonrobust Prob (F-statistic): 7.75e-13
## ============================================================================================
## coef std err t P>|t| [0.025 0.975]
## --------------------------------------------------------------------------------------------
## Intercept 61.1456 18.125 3.373 0.001 24.889 97.402
## city[T.state] 18.1526 20.413 0.889 0.377 -22.680 58.985
## highschool -1.5711 0.606 -2.592 0.012 -2.784 -0.358
## city[T.state]:highschool 0.7025 0.733 0.959 0.342 -0.763 2.168
## poverty 5.3105 1.433 3.705 0.000 2.443 8.178
## city[T.state]:poverty -5.1862 1.662 -3.121 0.003 -8.510 -1.862
## ============================================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• There isn’t significant (p-value=34.1523%) interaction between city and highschool.
• I.e. the effect of highschool on crime is the same in metropolitan areas (city=city) and the non-

metropolitan areas (city=state).
• There is clearly (p-value=0.2773%) interaction between city and poverty.
• I.e. the effect of poverty on crime is different in metropolitan and non-metropolitan areas.
• For city=state, the effect of poverty (on crime) is smaller than in the major cities.
• Hence, poverty has larger effect on crime in the major cities than in the states outside the major cites.

5.4 Multicollinearity and variance inflation factors
• Ideally the predictors in linear regression should be uncorrelated, which is almost never the case.
• The consequence of the two predictors being correlated (collinear), is that the uncertainty of the

parameter estimates increase (because the squared standard error increases) by a factor commonly
called the variance inflation factor (VIF).

• If multiple pairs of predictors are collinear, we say that the model suffers from multicollinearity.
• If we have a model with p predictors, then the VIF of xj is:

VIFj = 1
1 − R2

j

,

where R2
j is the multiple R2 value of a model using xj as a response and the remaining p − 1 predictors

as explanatory variables.
• The larger VIFj is, the higher the collinearity between xj and the remaining predictors is.
• Rule of thumb: If a VIF is larger than 10 the collinearity is too high.
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6 One way analysis of variance
6.1 Example

• The data set chickwts is available and on the course webpage.
• 71 newly hatched chicks were randomly allocated into six groups, and each group was given a different

feed supplement.
• Their weights in grams after six weeks are given along with feed types, i.e. we have a sample with

corresponding measurements of 2 variables:
– weight: a numeric variable giving the chick weight.
– feed: a factor giving the feed type.

• Always start with some graphics:
import pandas as pd

chickwts = pd.read_csv("https://asta.math.aau.dk/datasets?file=chickwts.txt", sep='\t')
chickwts.head(3)

## weight feed
## 0 179 horsebean
## 1 160 horsebean
## 2 136 horsebean

import seaborn as sns
import matplotlib.pyplot as plt

p = sns.boxplot(x='feed', y='weight', data=chickwts)
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6.2 The ANOVA Model
• We measure the response y which in this case is weight.
• We want to study the effect of the factor x on y. In this case x =feed and divides the sample in g = 6

groups.
• The mean responses within the groups are denoted µ1, µ2, . . . , µg.
• We will assume that

– y = µx + ϵ, when y is a response in group x
– ϵ are a sample from a population with mean zero and standard deviation σ.
– The standard deviation for the population in each group is the same and equals σ
– The response variable, y, is normal distributed within each group.

• The ANOVA test is a test of equal means for the different groups.

7 Estimation of mean values
7.1 Estimates

• Least squares estimates for population means µ̂x is given by the average of the response measurements
in group x.

• For a given measured response y we let ŷ denote the model’s prediction of y, i.e.

ŷ = µ̂x

if y is a response for an observation in group x.
• We use mean to find the mean, for each group:

chickwts.groupby('feed')['weight'].mean()

## feed
## casein 323.583333
## horsebean 160.200000
## linseed 218.750000
## meatmeal 276.909091
## soybean 246.428571
## sunflower 328.916667
## Name: weight, dtype: float64

• We can e.g. see that ŷ = 323.6, when feed=casein but ŷ = 160.2, when feed=horsebean.
• Is it a significant difference ?

7.2 Contrast coding
• In many cases there is a group corresponding to “no treatment” and we are interested in the effect of

different treatments.
• In this example we only have different feeds, which are sorted in lexicographical order by R, so casein

is the reference.
• We can specify the model via:

– Intercept corresponding to the mean response for the reference (casein).
– For each of the other groups we have a contrast, which measures the difference between the

mean value for that group and the reference group.
• For a given contrast we can calculate standard error, t-score and p-value, and thereby investigate

whether there is a difference between this group and the reference group.
• In Agresti this is referred to as using dummy variables.
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7.3 Example

import statsmodels.formula.api as smf

model = smf.ols('weight ~ feed', data=chickwts).fit()
model.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: weight R-squared: 0.542
## Model: OLS Adj. R-squared: 0.506
## No. Observations: 71 F-statistic: 15.36
## Covariance Type: nonrobust Prob (F-statistic): 5.94e-10
## =====================================================================================
## coef std err t P>|t| [0.025 0.975]
## -------------------------------------------------------------------------------------
## Intercept 323.5833 15.834 20.436 0.000 291.961 355.206
## feed[T.horsebean] -163.3833 23.485 -6.957 0.000 -210.287 -116.480
## feed[T.linseed] -104.8333 22.393 -4.682 0.000 -149.554 -60.112
## feed[T.meatmeal] -46.6742 22.896 -2.039 0.046 -92.400 -0.948
## feed[T.soybean] -77.1548 21.578 -3.576 0.001 -120.249 -34.061
## feed[T.sunflower] 5.3333 22.393 0.238 0.812 -39.388 50.054
## =====================================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• We get information about contrasts and their significance:
• Intercept corresponding to casein has weight different from zero (p < 2 × 10−16) (of course, chickens

grow a lot over 6 weeks)
• Weight difference between casein and horsebean is extremely significant (p=2 × 10−9).
• There is no significant weight difference between casein and sunflower (p=81%).

8 Overall test for effect
8.1 Graphical representation of models

• We have two alternative explanations of the data.
• Simple model with one parameter (mean): “The feed type doesn’t matter. The weight is just random

around a common mean value”.
• Complex model with six parameters (means): “The feed type is important. For each feed type we get a

different mean value and the weights are random around these values.”
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8.2 Hypotheses and test statistic
• Is the complex model significantly better (i.e. is there any effect of the explanatory grouping variable)?

We can write the corresponding hypotheses in two different ways

H0 : µ1 = µ2 = · · · = µg against Ha : At least 2 of the population means are different

• Alternatively

H0 : All contrasts are equal to zero. Ha : At least one contrast is non-zero.

• We will (indirectly) use R2 to do the test. If it is large, the complex model has good predictive power
compared to the simple model. To judge significance we use

Fobs = (n − g)R2

(g − 1)(1 − R2) = (TSS − SSE)/(g − 1)
SSE/(n − g) .

• Large values of R2 implies large values of Fobs, which points to the alternative hypothesis.
• I.e. when we have calculated the observed value Fobs, then we have to find the probability that a new

experiment would result in a larger value.
• TSS: error sum of squares if common mean. SSE: error sum of squares if different means.
• TSS-SSE: how much does error sum of squares increase if means are restricted to be equal.

8.3 Interpretation of F statistic - Variance between/within groups
• It can be shown that the numerator of Fobs is a measure of the variance between the groups,

i.e. how much “boxes” vary around the total average (the red line).

• Likewise it can be shown the denominator of Fobs is a measure for the variance within groups,
i.e. how “tall” the boxes in the boxplot are.
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• The bigger deviations between the red line and the box means relative to the variation within boxes,
the less we trust H0. This is measured by the F-test statistic, which can be stated as

Fobs = variance between groups
variance within groups

8.4 Example

import statsmodels.formula.api as smf

model = smf.ols('weight ~ feed', data=chickwts).fit() # same as earlier
model.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: weight R-squared: 0.542
## Model: OLS Adj. R-squared: 0.506
## No. Observations: 71 F-statistic: 15.36
## Covariance Type: nonrobust Prob (F-statistic): 5.94e-10
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## =====================================================================================
## coef std err t P>|t| [0.025 0.975]
## -------------------------------------------------------------------------------------
## Intercept 323.5833 15.834 20.436 0.000 291.961 355.206
## feed[T.horsebean] -163.3833 23.485 -6.957 0.000 -210.287 -116.480
## feed[T.linseed] -104.8333 22.393 -4.682 0.000 -149.554 -60.112
## feed[T.meatmeal] -46.6742 22.896 -2.039 0.046 -92.400 -0.948
## feed[T.soybean] -77.1548 21.578 -3.576 0.001 -120.249 -34.061
## feed[T.sunflower] 5.3333 22.393 0.238 0.812 -39.388 50.054
## =====================================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• The F-statistic gives us the value of Fobs = 15.36 and the corresponding p-value (5.9 × 10−10).
Clearly there is a significant difference between the types of feed.

9 Two way analysis of variance
9.1 Additive effects

• The data set ToothGrowth is available on the webpage.
• The data describes the tooth length in guinea pigs where some receive vitamin C treatment and others

are given orange juice in different dosage.
ToothGrowth = pd.read_csv("https://asta.math.aau.dk/datasets?file=ToothGrowth.txt", sep='\t')
ToothGrowth['dose'] = pd.Categorical(

ToothGrowth['dose'].map({0.5: 'LO', 1: 'ME', 2: 'HI'}),
categories=['LO', 'ME', 'HI'],
ordered=True

)
ToothGrowth.head(3)

## len supp dose
## 0 4.2 VC LO
## 1 11.5 VC LO
## 2 7.3 VC LO

• A total of 60 observations on 3 variables.
– len The tooth length
– supp The type of the supplement (OJ or VC)
– dose The dosage (LO, ME, HI)

• We will study the response len with the predictors supp and dose.
• At first we look at the model with additive effects

– len=µ + "effect of supp"+ "effect of dose" + error
• This is also called the main effects model since it does not contain interaction terms.
• The parameter µ corresponds to the Intercept and is the mean tooth length in the reference group

(supp OJ, dose LO).
• The effect of supp is the difference in mean when changing from OJ to VC.
• The effect of dose is the difference in mean when changing from LO to eitherME or HI.

9.2 Dummy coding
• Let us introduce dummy variables:

– sC = 1 if supp VC and zero otherwise.
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– dM = 1 if dose is ME and zero otherwise.
– dH = 1 if dose is HI and zero otherwise.

• Then we state the model

length = µ + β1sC + β2dM + β3dH + error.

• Interpretation:
– µ is the expected tooth length when supp is OJ and dose is LO (sC = dM = dH = 0)).
– β1 is the effect of supplement OJ to VC (sC = 1).
– β2 is the effect of increasing dosage from LO to ME (dM = 1).
– β3 is the effect of increasing dosage from LO to HI (dH = 1).

• As a two-way table:

LO ME HI
OJ µ µ + β2 µ + β3
V C µ + β1 µ + β1 + β2 µ + β1 + β3

9.3 Main effect model in R
• The main effects model is fitted by

MainEff = smf.ols('len ~ supp + dose', data=ToothGrowth).fit()
MainEff.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: len R-squared: 0.762
## Model: OLS Adj. R-squared: 0.750
## No. Observations: 60 F-statistic: 59.88
## Covariance Type: nonrobust Prob (F-statistic): 1.78e-17
## ==============================================================================
## coef std err t P>|t| [0.025 0.975]
## ------------------------------------------------------------------------------
## Intercept 12.4550 0.988 12.603 0.000 10.475 14.435
## supp[T.VC] -3.7000 0.988 -3.744 0.000 -5.680 -1.720
## dose[T.ME] 9.1300 1.210 7.543 0.000 6.705 11.555
## dose[T.HI] 15.4950 1.210 12.802 0.000 13.070 17.920
## ==============================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• The model has 4 parameters.
• The F test at the end compares with the (null) model with only one overall mean parameter.

9.4 Testing effect of supp
• Alternative model without effect of supp:

doseEff = smf.ols('len ~ dose', data=ToothGrowth).fit()

• We can compare R2 to see if doseEff (Model 1) is sufficient to explain the data compared to MainEff
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(Model 2). This is done by converting to F -statistic:

Fobs = (R2
2 − R2

1)/(df1 − df2)
(1 − R2

2)/df2
= (SSE1 − SSE2)/(df1 − df2)

(SSE2)/df2
.

• SSE1 − SSE2: increase in error sum of square when using Model 1 instead of Model 2
• In R the calculations are done using anova:

from statsmodels.stats.anova import anova_lm

anova_lm(doseEff, MainEff)

## df_resid ssr df_diff ss_diff F Pr(>F)
## 0 57.0 1025.775 0.0 NaN NaN NaN
## 1 56.0 820.425 1.0 205.35 14.016638 0.000429

• p-value is 0.0004 hence we reject that supp does not have an effect. Thus we prefer Model 2 (MainEff).

9.5 Testing effect of dose
• Alternative model without effect of dose:

suppEff = smf.ols('len ~ supp', data=ToothGrowth).fit()
anova_lm(suppEff, MainEff)

## df_resid ssr df_diff ss_diff F Pr(>F)
## 0 58.0 3246.859333 0.0 NaN NaN NaN
## 1 56.0 820.425000 2.0 2426.434333 82.810935 1.871163e-17

• p-value is ≈ 0 hence we reject that dose does not have an effect. Thus we prefer Model 2 (MainEff).

10 Interaction
10.1 Example

• We will extend the model by introducing an interaction between supp and dose.

• Interaction plot:
means = ToothGrowth.groupby(['dose', 'supp'], observed=False)['len'].mean().unstack()
means.plot(marker='o')
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• For each of the supplement types we plot the average tooth length as a function of dosage.

• If the main effects model is correct then the difference between supplements is the same for all levels of
dosage, i.e. the curves should be parallel - except for noise.

• This does not seem to be the case.

• This is how the plot should look if the main effects model (no interaction) is correct:

21



dose

m
ea

n 
to

ot
h 

le
ng

th

10

15

20

25

LO ME HI

supp
OJ
VC

• Parallel lines mean that effect of supplement does not depend on dose !

10.2 Dummy coding
• The extended model can be formulated as

length = µ + β1sC + β2dM + β3dH + β4sCdM + β5sCdH + error

• Interpretation:
– µ is the expected tooth length for supp OJ and dose LO (sC = dM = dH = 0).
– β1 is the effect of changing from supp OJ to VC, dose is LO (sC = 1, dM = dH = 0).
– β2 is the effect of increasing dose from LO to ME, when supp is OJ (sC = 0, dM = 1).
– β3 is the effect of increasing dose from LO to HI, when supp is OJ (sC = 0, dH = 1).
– β4 is an additional effect of both changing from supp OJ to VC and increasing dose from LO to ME

(sC = 1, dM = 1)
– β5 is an additional effect of both changing from supp OJ to VC and increasing dose from LO to HI

(sC = 1, dH = 1)
• As a two-way table:

LO ME HI
OJ µ µ + β2 µ + β3
V C µ + β1 µ + β1 + β2 + β4 µ + β1 + β3 + β5

• Further examples:
– effect of changing from supp OJ to VC if dose is LO is µ + β1 − µ = β1
– effect of changing from supp OJ to VC if dose is ME is µ + β1 + β2 + β4 − µ − β2 = β1 + β4
– effect of changing from supp OJ to VC if dose is HI is µ + β1 + β3 + β5 − µ − β3 = β1 + β5
– if β4 = 0 and β5 = 0 the effect of changing from OJ to VC does not depend on dose

10.3 Example
• We fit the interaction model by changing plus to multiply in the model expression from before:
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Interaction = smf.ols('len ~ supp*dose', data=ToothGrowth).fit()

• Now we can think of an experiment with 6 groups corresponding to each combination of the predictors.

• Is added interaction significant ? - we compare main effects model and more complex interaction model
using anova:

anova_lm(MainEff, Interaction)

## df_resid ssr df_diff ss_diff F Pr(>F)
## 0 56.0 820.425 0.0 NaN NaN NaN
## 1 54.0 712.106 2.0 108.319 4.106991 0.02186

• With a p-value of 2.186% there is a significant interaction supp:dose, i.e. the lack of parallel curves in
the interaction plot is significant.

Interaction.summary(slim = True)

## <class 'statsmodels.iolib.summary.Summary'>
## """
## OLS Regression Results
## ==============================================================================
## Dep. Variable: len R-squared: 0.794
## Model: OLS Adj. R-squared: 0.775
## No. Observations: 60 F-statistic: 41.56
## Covariance Type: nonrobust Prob (F-statistic): 2.50e-17
## =========================================================================================
## coef std err t P>|t| [0.025 0.975]
## -----------------------------------------------------------------------------------------
## Intercept 13.2300 1.148 11.521 0.000 10.928 15.532
## supp[T.VC] -5.2500 1.624 -3.233 0.002 -8.506 -1.994
## dose[T.ME] 9.4700 1.624 5.831 0.000 6.214 12.726
## dose[T.HI] 12.8300 1.624 7.900 0.000 9.574 16.086
## supp[T.VC]:dose[T.ME] -0.6800 2.297 -0.296 0.768 -5.285 3.925
## supp[T.VC]:dose[T.HI] 5.3300 2.297 2.321 0.024 0.725 9.935
## =========================================================================================
##
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
## """

• Note the negative effect of changing from OJ to VC when dose is low is cancelled by the positive
interaction parameter (β5 for suppVC:doseHI) meaning almost no difference between OJ and VC when
dose is high (compare with interaction plot)

10.4 Hierarchical principle
• In presence of interaction effect it does not make sense to make tests for absence of main effects ! Indeed

each factor has an effect that just happens to vary depending on the other factor
• Hence start by investigating whether there is an interaction effect
• If yes: no further tests !
• If no: you may test main effects if relevant for your study
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