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0.1 Response variable and explanatory variable
• We conduct an experiment, where we at random choose 50 IT-companies and 50 service companies and

measure their profit ratio. Is there association between company type (IT/service) and profit ratio?
• In other words we compare samples from 2 different populations. For each company we register:

– The binary variable company type, which is called the explanatory variable and divides data
in 2 groups.

– The quantitative variable profit ratio, which is called the response variable.

0.2 Dependent/independent samples
• In the example with profit ratio of 50 IT-companies and 50 service companies we have independent

samples, since the same company cannot be in both groups.
• Now, think of another type of experiment, where we at random choose 50 IT-companies and measure

their profit ratio in both 2009 and 2010. Then we may be interested in whether there is association
between year and profit ratio?

• In this example we have dependent samples, since the same company is in both groups.
• Dependent samples may also be referred to as paired samples.

0.3 Comparison of two means (Independent samples)
• We consider the situation, where we have two quantitative samples:

– Population 1 has mean µ1, which is estimated by µ̂1 = ȳ1 based on a sample of size n1.
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– Population 2 has mean µ2, which is estimated by µ̂2 = ȳ2 based on a sample of size n2.
– We are interested in the difference µ2 − µ1, which is estimated by d = ȳ2 − ȳ1.
– Assume that we can find the estimated standard error sed of the difference and that this has

degrees of freedom df .
– Assume that the samples either are large or come from a normal population.

• Then we can construct a
– confidence interval for the unknown population difference of means µ2 − µ1 by

(ȳ2 − ȳ1) ± tcritsed,

where the critical t-score, tcrit, determines the confidence level.
– significance test:

∗ for the null hypothesis H0 : µ2 − µ1 = 0 and alternative hypothesis Ha : µ2 − µ1 ̸= 0.
∗ which uses the test statistic: tobs = (ȳ2−ȳ1)−0

sed
, that has to be evaluated in a t-distribution with

df degrees of freedom.

0.4 Comparison of two means (Independent samples)
• In the independent samples situation it can be shown that

sed =
√

se2
1 + se2

2,

where se1 and se2 are estimated standard errors for the sample means in populations 1 and 2, respectively.
• We recall, that for these we have se = s√

n
, i.e.

sed =

√
s2

1
n1

+ s2
2

n2
,

where s1 and s2 are estimated standard deviations for population 1 and 2, respectively.
• The degrees of freedom df for sed can be estimated by a complicated formula, which we will not

present here.
• For the confidence interval and the significance test we note that:

– If both n1 and n2 are above 30, then we can use the standard normal distribution (z-score) rather
than the t-distribution (t-score).

– If n1 or n2 are below 30, then we let Python calculate the degrees of freedom and p-value/confidence
interval.

0.5 Example: Comparing two means (independent samples)
We return to the Chile data. We study the association between the variables sex and statusquo (scale
of support for the status-quo). So, we will perform a significance test to test for difference in the mean of
statusquo for male and females.
import pandas as pd

Chile = pd.read_csv("https://asta.math.aau.dk/datasets?file=Chile.txt", sep = "\t")

stats = Chile.groupby("sex")["statusquo"].agg(
['mean',
'std',
'count'

]).reset_index() # reset_index() resets the grouping again
stats

## sex mean std count
## 0 F 0.065706 1.003212 1368
## 1 M -0.068355 0.992803 1315
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• Difference: d = 0.0657 − (−0.0684) = 0.1341.
• Estimated standard deviations: s1 = 1.0032 (females) and s2 = 0.9928 (males).
• Sample sizes: n1 = 1368 and n2 = 1315.
• Estimated standard error of difference: sed =

√
s2

1
n1

+ s2
2

n2
=

√
1.00322

1368 + 0.99282

1315 = 0.0385.
• Observed t-score for H0 : µ1 − µ2 = 0 is: tobs = d−0

sed
= 0.1341

0.0385 = 3.4786.
• Since both sample sizes are “pretty large” (> 30), we can use the z-score instead of the t-score for

finding the p-value (i.e. we use the standard normal distribution):
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from scipy.stats import norm
1 - norm.cdf(x = 3.4786, loc = 0, scale = 1)

## np.float64(0.00025202016841718855)

• Then the p-value is 2 · 0.00025 = 0.0005, so we reject the null hypothesis.
• We can leave all the calculations to the software:

from scipy.stats import ttest_ind

female = Chile.loc[Chile['sex'] == "F", 'statusquo'].dropna()
male = Chile.loc[Chile['sex'] == "M", 'statusquo'].dropna()

stat, pval = ttest_ind(female, male, equal_var = False)

print("t-statistic:", stat)

## t-statistic: 3.4785834945762018
print("p-value:", pval)

## p-value: 0.0005121107038059029

3



• We recognize the t-score 3.4786 and the p-value 0.0005. The estimated degrees of freedom df = 2679 is
so large that we can not tell the difference between results obtained using z-score and t-score.

0.6 Comparison of two means: confidence interval (independent samples)
• We have already found all the ingredients to construct a confidence interval for µ2 − µ1:

– d = ȳ2 − ȳ1 estimates µ2 − µ1.
– sed =

√
s2

1
n1

+ s2
2

n2
estimates the standard error of d.

• Then:
d ± tcritsed

is a confidence interval for µ2 − µ1.
• The critical t-score, tcrit is chosen corresponding to the wanted confidence level. If n1 and n2 both are

greater than 30, then tcrit = 2 yields a confidence level of approximately 95%.

0.7 Comparison of two means: paired t-test (dependent samples)
• Experiment:

– You choose 32 students at random and measure their average reaction time in a driving simulator
while they are listening to radio or audio books.

– Later the same 32 students redo the simulated driving while talking on a cell phone.
• It is interesting to investigate whether or not the fact that you are actively participating in a conversation

changes your average reaction time compared to when you are passively listening.
• So we have 2 samples corresponding to with/without phone. In this case we have dependent samples,

since we have 2 measurement for each student.
• We use the following strategy for analysis:

– For each student calculate the change in average reaction time with and without talking on the
phone.

– The changes d1, d2, . . . , d32 are now considered as ONE sample from a population with mean µ.
– Test the hypothesis H0 : µ = 0 as usual (using a t-test for testing the mean as in the previous

lecture).

0.7.1 Reaction time example

• Data is organized in a data frame with 3 variables:
– student (integer – a simple id)
– reaction_time (numeric – average reaction time in milliseconds)
– phone (factor – yes/no indicating whether speaking on the phone)

reaction = pd.read_csv("https://asta.math.aau.dk/datasets?file=reaction.txt", sep = "\t")
reaction.head(3)

## student reaction_time phone
## 0 1 604 no
## 1 2 556 no
## 2 3 540 no

Instead of doing manual calculations we let the software perform the significance test (using a paired test as
our samples are paired/dependent):
from scipy.stats import ttest_rel

yes = reaction[reaction['phone'] == "yes"]
no = reaction[reaction['phone'] == "no"]
print(all(yes['student'].values == no['student'].values))
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## True
stat, pval = ttest_rel(no["reaction_time"], yes["reaction_time"])
print("t-statistic:", stat)

## t-statistic: -5.456300665835772
print("p-value:", pval)

## p-value: 5.803405318112956e-06

• With a p-value of 0.0000058 we reject that speaking on the phone has no influence on the reaction time.

• To understand what is going on, we can manually find the reaction time difference for each student and
do a one sample t-test on this difference:

from scipy.stats import ttest_1samp
diff = no["reaction_time"].values - yes["reaction_time"].values
stat, pval = ttest_1samp(diff, popmean = 0)
print("t-statistic:", stat)

## t-statistic: -5.456300665835772
print("p-value:", pval)

## p-value: 5.803405318112956e-06

1 Comparison of two proportions
1.1 Comparison of two proportions

• We consider the situation, where we have two qualitative samples and we investigate whether a given
property is present or not:

– Let the proportion of population 1 which has the property be π1, which is estimated by π̂1 based
on a sample of size n1.

– Let the proportion of population 2 which has the property be π2, which is estimated by π̂2 based
on a sample of size n2.

– We are interested in the difference π2 − π1, which is estimated by d = π̂2 − π̂1.
– Assume that we can find the estimated standard error sed of the difference.

• Then we can construct
– an approximate confidence interval for the difference, π2 − π1.
– a significance test.

1.2 Comparison of two proportions: Independent samples
• In the situation where we have independent samples we know that

sed =
√

se2
1 + se2

2,

where se1 and se2 are the estimated standard errors for the sample proportion in population 1 and 2,
respectively.

• We recall, that these are given by se =
√

π̂(1−π̂)
n , i.e.

sed =

√
π̂1(1 − π̂1)

n1
+ π̂2(1 − π̂2)

n2
.
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• A (approximate) confidence interval for π2 − π1 is obtained by the usual construction:

(π̂2 − π̂1) ± zcritsed,

where the critical z-score determines the confidence level.

1.3 Approximate test for comparing two proportions (independent samples)
• We consider the null hypothesis H0: π1 = π2 (equivalently H0 : π1 − π2 = 0) and the alternative

hypothesis Ha: π1 ̸= π2.
• Assuming H0 is true, we have a common proportion π, which is estimated by

π̂ = n1π̂1 + n2π̂2

n1 + n2
,

i.e. we aggregate the populations and calculate the relative frequency of the property (with other words:
we estimate the proportion, π, as if the two samples were one).

• Rather than using the estimated standard error of the difference from previous, we use the following
that holds under H0:

se0 =

√
π̂(1 − π̂)

(
1
n1

+ 1
n2

)
• The observed test statistic/z-score for H0 is then:

zobs = (π̂2 − π̂1) − 0
se0

,

which is evaluated in the standard normal distribution.
• The p-value is calculated in the usual way.

WARNING: The approximation is only good, when n1π̂, n1(1 − π̂), n2π̂, n2(1 − π̂) all are greater than 5.

1.4 Example: Approximate confidence interval and test for comparing propor-
tions

We return to the Chile dataset. We make a new binary variable indicating whether the person intends to
vote no or something else (and we remember to tell the software that it should think of this as a grouping
variable):
import numpy as np

Chile["vote"].value_counts()

## vote
## N 889
## Y 868
## U 588
## A 187
## Name: count, dtype: int64
Chile["vote"].value_counts(dropna = False)

## vote
## N 889
## Y 868
## U 588
## A 187
## NaN 168
## Name: count, dtype: int64
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# Step 1: initialize with NA
voteNo = pd.Series([np.nan] * len(Chile), dtype = "object")
# Step 2: mark TRUE where vote == "N"
voteNo[Chile["vote"] == "N"] = True
# Step 3: mark FALSE where vote != "N" (but not NA)
voteNo[(Chile["vote"].notna()) & (Chile["vote"] != "N")] = False

Chile["voteNo"] = pd.Categorical(
voteNo,
categories=[True, False],
ordered=False

)
Chile["voteNo"].value_counts(dropna = False)

## voteNo
## False 1643
## True 889
## NaN 168
## Name: count, dtype: int64

We study the association between the variables sex and voteNo:
tab = pd.crosstab(Chile["sex"], Chile["voteNo"], dropna = True)
tab

## voteNo True False
## sex
## F 363 946
## M 526 697

This gives us all the ingredients needed in the hypothesis test:

• Estimated proportion of men that vote no: π̂1 = 526
526+697 = 0.430

• Estimated proportion of women that vote no: π̂2 = 363
363+946 = 0.277

1.5 Example: Approximate confidence interval (cont.)
• Estimated difference:

d = π̂2 − π̂1 = 0.277 − 0.430 = −0.153

• Standard error of difference:

sed =

√
π̂1(1 − π̂1)

n1
+ π̂2(1 − π̂2)

n2

=
√

0.430(1 − 0.430)
1223 + 0.277(1 − 0.277)

1309 = 0.0188.

• Approximate 95% confidence interval for difference:

d ± 1.96 · sed = (−0.190, −0.116).

1.6 Example: p-value (cont.)
• Estimated common proportion:

π̂ = 1223 × 0.430 + 1309 × 0.277
1309 + 1223 = 526 + 363

1309 + 1223 = 0.351.
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• Standard error of difference when H0 : π1 = π2 is true:

se0 =

√
π̂(1 − π̂)

(
1
n1

+ 1
n2

)
= 0.0190.

• The observed test statistic/z-score:
zobs = d

se0
= −8.06.

• The test for H0 against Ha : π1 ≠ π2 yields a p-value that is practically zero, i.e. we can reject that the
proportions are equal.

1.7 Automatic calculation

from statsmodels.stats.proportion import proportions_ztest
from statsmodels.stats.proportion import confint_proportions_2indep

Chile2 = Chile.dropna(subset=["voteNo"])

counts = Chile2.groupby("sex")["voteNo"].apply(lambda x: (x == True).sum())
nobs = Chile2.groupby("sex")["voteNo"].count()

print("Counts (successes):\n", counts)

## Counts (successes):
## sex
## F 363
## M 526
## Name: voteNo, dtype: int64
print("Totals (nobs):\n", nobs)

## Totals (nobs):
## sex
## F 1309
## M 1223
## Name: voteNo, dtype: int64
print("sample estimates:\n")

## sample estimates:
print(counts/nobs)

## sex
## F 0.277311
## M 0.430090
## Name: voteNo, dtype: float64
# Two-sample proportion z-test
stat, pval = proportions_ztest(count=counts, nobs=nobs, value=0, alternative='two-sided')

ci_low, ci_high = confint_proportions_2indep(
count1=counts.iloc[0], nobs1=nobs.iloc[0],
count2=counts.iloc[1], nobs2=nobs.iloc[1],
method="wald", alpha=0.05

)
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print("p-value:", pval)

## p-value: 8.389098566796607e-16
print(f"95% CI for difference: ({ci_low:.3f}, {ci_high:.3f})")

## 95% CI for difference: (-0.190, -0.116)

1.8 Fisher’s exact test
• If n1π̂, n1(1 − π̂), n2π̂, n2(1 − π̂) are not all greater than 5, then the approximate test cannot be

trusted. Instead you can use Fisher’s exact test:
from scipy.stats import fisher_exact

oddsratio, pvalue = fisher_exact(tab)
print("Odds ratio:", oddsratio)

## Odds ratio: 0.5084667079317358
print("p-value:", pvalue)

## p-value: 1.0396837491279301e-15

• Again the p-value is seen to be extremely small, so we definitely reject the null hypothesis of equal
voteNo proportions for women and men.

1.9 Agresti: Overview of comparison of two groups
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