Comparison of two groups
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0.1 Response variable and explanatory variable
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e We conduct an experiment, where we at random choose 50 IT-companies and 50 service companies and

measure their profit ratio. Is there association between company type (IT/service) and profit ratio?

e In other words we compare samples from 2 different populations. For each company we register:

— The binary variable company type, which is called the explanatory variable and divides data

in 2 groups.
— The quantitative variable profit ratio, which is called the response variable.

0.2 Dependent/independent samples

e In the example with profit ratio of 50 IT-companies and 50 service companies we have independent

samples, since the same company cannot be in both groups.

e Now, think of another type of experiment, where we at random choose 50 IT-companies and measure
their profit ratio in both 2009 and 2010. Then we may be interested in whether there is association

between year and profit ratio?
e In this example we have dependent samples, since the same company is in both groups.
e Dependent samples may also be referred to as paired samples.

0.3 Comparison of two means (Independent samples)

e We consider the situation, where we have two quantitative samples:
— Population 1 has mean p, which is estimated by ji; = y; based on a sample of size n;.
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— Population 2 has mean puo, which is estimated by fi; = ¢ based on a sample of size ns.
— We are interested in the difference po — 1, which is estimated by d = g2 — 1.
— Assume that we can find the estimated standard error se; of the difference and that this has
degrees of freedom df.
— Assume that the samples either are large or come from a normal population.
Then we can construct a
— confidence interval for the unknown population difference of means ps — 1 by

(52 - 7;1) + tcritseda
where the critical t-score, t..i;, determines the confidence level.
— significance test:
* for the null hypothesis Hy : pe — up = 0 and alternative hypothesis H, : ps — puy # 0.

* which uses the test statistic: t,ps = W’ that has to be evaluated in a t-distribution with

df degrees of freedom. >
Comparison of two means (Independent samples)

In the independent samples situation it can be shown that

seq = \/se? + se3,

where se; and ses are estimated standard errors for the sample means in populations 1 and 2, respectively.
We recall, that for these we have se = ﬁ, ie.
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where s; and s, are estimated standard deviations for population 1 and 2, respectively.
The degrees of freedom df for se; can be estimated by a complicated formula, which we will not
present here.
For the confidence interval and the significance test we note that:
— If both ny and nq are above 30, then we can use the standard normal distribution (z-score) rather
than the ¢-distribution (¢-score).
— If ny or ny are below 30, then we let Python calculate the degrees of freedom and p-value/confidence
interval.

Example: Comparing two means (independent samples)

We return to the Chile data. We study the association between the variables sex and statusquo (scale
of support for the status-quo). So, we will perform a significance test to test for difference in the mean of
statusquo for male and females.

import pandas as pd

Chile = pd.read_csv("https://asta.math.aau.dk/datasets?file=Chile.txt", sep = "\t")

stats = Chile.groupby("sex") ["statusquo"].agg(

## 1

['mean"',
'std',
'count'’
1) .reset_index() # reset_index() resets the grouping again
stats
##  sex mean std count
## 0 F 0.065706 1.003212 1368

M -0.068355 0.992803 1315



« Difference: d = 0.0657 — (—0.0684) = 0.1341.
o Estimated standard deviations: s; = 1.0032 (females) and sy = 0.9928 (males).
e Sample sizes: n; = 1368 and ny = 1315.

2 «2 -
o Estimated standard error of difference: seqy = :711 + % = \/M 4 0.99282 _ () 9385,

1368 1315

e Observed t-score for Hy : 1 — po = 01is:  tops = ‘i;f = 8:523% = 3.4786.

« Since both sample sizes are “pretty large” (> 30), we can use the z-score instead of the t-score for
finding the p-value (i.e. we use the standard normal distribution):

0.4-
0.3-
> probability
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from scipy.stats import norm
1 - norm.cdf(x = 3.4786, loc = 0, scale = 1)

## np.float64(0.00025202016841718855)

e Then the p-value is 2 - 0.00025 = 0.0005, so we reject the null hypothesis.
o We can leave all the calculations to the software:

from scipy.stats import ttest_ind

female = Chile.loc[Chile['sex'] == "F", 'statusquo'].dropna()
male = Chile.loc[Chile['sex'] == "M", 'statusquo'].dropna()

stat, pval = ttest_ind(female, male, equal_var = False)
print("t-statistic:", stat)

## t-statistic: 3.4785834945762018
print("p-value:", pval)

## p-value: 0.0005121107038059029



o We recognize the t-score 3.4786 and the p-value 0.0005. The estimated degrees of freedom df = 2679 is
so large that we can not tell the difference between results obtained using z-score and t-score.

0.6 Comparison of two means: confidence interval (independent samples)

e We have already found all the ingredients to construct a confidence interval for ps — pq:
— d = ys — yp estimates ps — 1.

2 2
— seq =1/ Z—ll + 2—22 estimates the standard error of d.
e Then:

dxteriiseq

is a confidence interval for ps — py.
o The critical t-score, t.p; is chosen corresponding to the wanted confidence level. If ny and no both are
greater than 30, then t..;; = 2 yields a confidence level of approximately 95%.

0.7 Comparison of two means: paired t-test (dependent samples)

o Experiment:
— You choose 32 students at random and measure their average reaction time in a driving simulator
while they are listening to radio or audio books.
— Later the same 32 students redo the simulated driving while talking on a cell phone.
o It is interesting to investigate whether or not the fact that you are actively participating in a conversation
changes your average reaction time compared to when you are passively listening.
e So we have 2 samples corresponding to with/without phone. In this case we have dependent samples,
since we have 2 measurement for each student.
o We use the following strategy for analysis:
— For each student calculate the change in average reaction time with and without talking on the

phone.
— The changes dy,ds, . .., dss are now considered as ONE sample from a population with mean pu.
— Test the hypothesis Hy : 4 = 0 as usual (using a t-test for testing the mean as in the previous
lecture).

0.7.1 Reaction time example

e Data is organized in a data frame with 3 variables:
— student (integer — a simple id)
— reaction_time (numeric — average reaction time in milliseconds)
— phone (factor — yes/no indicating whether speaking on the phone)

reaction = pd.read_csv("https://asta.math.aau.dk/datasets?file=reaction.txt", sep = "\t")
reaction.head(3)

## student reaction_time phone
## 0 1 604 no
## 1 2 556 no
## 2 3 540 no

Instead of doing manual calculations we let the software perform the significance test (using a paired test as
our samples are paired/dependent):

from scipy.stats import ttest_rel

yes = reaction[reaction['phone'] == "yes"]
no = reaction[reaction['phone'] == "no"]
print(all(yes['student'].values == no['student'].values))



## True

stat, pval = ttest_rel(no["reaction_time"], yes["reaction_time"])
print("t-statistic:", stat)

## t-statistic: -5.456300665835772
print("p-value:", pval)

## p-value: 5.803405318112956e-06
e With a p-value of 0.0000058 we reject that speaking on the phone has no influence on the reaction time.

e To understand what is going on, we can manually find the reaction time difference for each student and
do a one sample t-test on this difference:

from scipy.stats import ttest_1lsamp

diff = no["reaction_time"].values - yes["reaction_time"].values
stat, pval = ttest_lsamp(diff, popmean = 0)
print("t-statistic:", stat)

## t-statistic: -5.456300665835772
print("p-value:", pval)

## p-value: 5.803405318112956e-06

1 Comparison of two proportions

1.1 Comparison of two proportions

e We consider the situation, where we have two qualitative samples and we investigate whether a given
property is present or not:
— Let the proportion of population 1 which has the property be 71, which is estimated by 7, based
on a sample of size ny.
— Let the proportion of population 2 which has the property be 75, which is estimated by 7> based
on a sample of size ns.
— We are interested in the difference 7wy — 71, which is estimated by d = 75 — 7.
— Assume that we can find the estimated standard error se; of the difference.
e Then we can construct
— an approximate confidence interval for the difference, mo — 7.
— a significance test.

1.2 Comparison of two proportions: Independent samples

e In the situation where we have independent samples we know that

seq = \/sef + se%,

where se; and se; are the estimated standard errors for the sample proportion in population 1 and 2,

respectively.
e We recall, that these are given by se = ﬁ(ln_ﬁ)? ie.
A (1— 7 A (1— 7
Sed—\/ﬂl( 7T1) —|—7T2( 7T2).
ni ng



o A (approximate) confidence interval for w9 — 7 is obtained by the usual construction:

(fro — 1) & Zeritseq,

where the critical z-score determines the confidence level.

1.3 Approximate test for comparing two proportions (independent samples)

o We consider the null hypothesis Hy: 7 = my (equivalently Hy : mp — mo = 0) and the alternative
hypothesis H,: m # ms.
e Assuming Hj is true, we have a common proportion 7, which is estimated by

N1 + Nt
ny +TL2

7/1- =
i.e. we aggregate the populations and calculate the relative frequency of the property (with other words:

we estimate the proportion, 7, as if the two samples were one).
e Rather than using the estimated standard error of the difference from previous, we use the following

that holds under Hy:
1 1
seg = \/fr(l — ) ( + )
ny U»)

o The observed test statistic/z-score for Hy is then:

(g —71) =0
Zobs = )
S€o

which is evaluated in the standard normal distribution.
e The p-value is calculated in the usual way.

~

WARNING: The approximation is only good, when ny7, ni(l — #), na@, na(1 — @) all are greater than 5.

1.4 Example: Approximate confidence interval and test for comparing propor-
tions

We return to the Chile dataset. We make a new binary variable indicating whether the person intends to
vote no or something else (and we remember to tell the software that it should think of this as a grouping
variable):

import numpy as np

Chile["vote"].value_counts()

## vote

## N 889
## Y 868
## U 588
## A 187

## Name: count, dtype: int64

Chile["vote"].value_counts(dropna = False)

## vote

## N 889
## Y 868
## U 588
## A 187

## NaN 168
## Name: count, dtype: int64



# Step 1: initialize with NA

voteNo = pd.Series([np.nan] * len(Chile), dtype = "object")

# Step 2: mark TRUE where vote == "N"

voteNo[Chile["vote"] == "N"] = True

# Step 3: mark FALSE where wvote != "N" (but not NA)
voteNo[(Chile["vote"] .notna()) & (Chile["vote"] != "N")] = False

Chile["voteNo"] = pd.Categorical(
voteNo,
categories=[True, False],
ordered=False

)

Chile["voteNo"].value_counts(dropna = False)
## voteNo

## False 1643

## True 889

## NaN 168

## Name: count, dtype: int64

We study the association between the variables sex and voteNo:

tab = pd.crosstab(Chile["sex"], Chile["voteNo"], dropna = True)
tab

## voteNo True False

## sex
## F 363 946
## M 526 697

This gives us all the ingredients needed in the hypothesis test:

o Estimated proportion of men that vote no: #; = 52&% =0.430
e Estimated proportion of women that vote no: 75 = % =0.277

1.5 Example: Approximate confidence interval (cont.)

o Estimated difference:

d=1my— 71 =0.277 - 0.430 = —0.153

¢ Standard error of difference:

v \/frlu — ) | Fall = 7o)

ni n2

_/0.430(1 —0.430) =~ 0.277(1 —0.277)
B \/ 1223 * 1309 = 0-0188,

o Approximate 95% confidence interval for difference:

d+1.96 - seq = (—0.190, —0.116).

1.6 Example: p-value (cont.)

e Estimated common proportion:

122 4 1 2 2
P 3 % 0.430 + 1309 x 0.277 526 + 363  0.351.

1309 + 1223 1309 + 1223



o Standard error of difference when Hy : m; = 7y is true:

1 1
seq = \/fr(l —7) (nl + n2> = 0.0190.

o The observed test statistic/z-score:

d
Zobs = — = —8.06.
S€o

e The test for Hy against H, : m1 # 7o yields a p-value that is practically zero, i.e. we can reject that the
proportions are equal.

1.7 Automatic calculation

from statsmodels.stats.proportion import proportions_ztest
from statsmodels.stats.proportion import confint_proportions_2indep

Chile2

Chile.dropna(subset=["voteNo"])

counts = Chile2.groupby("sex") ["voteNo"].apply(lambda x: (x == True).sum())
nobs Chile2.groupby("sex") ["voteNo"] .count ()

print ("Counts (successes):\n", counts)

## Counts (successes):

## sex
## F 363
## M 526

## Name: voteNo, dtype: int64
print("Totals (nobs):\n", nobs)

## Totals (nobs):

## sex
## F 1309
## M 1223

## Name: voteNo, dtype: int64

print("sample estimates:\n")

## sample estimates:

print (counts/nobs)

## sex

## F 0.277311

## M 0.430090

## Name: voteNo, dtype: float64

# Two-sample proportion z-test
stat, pval = proportions_ztest(count=counts, nobs=nobs, value=0, alternative='two-sided')

ci_low, ci_high = confint_proportions_2indep(
countl=counts.iloc[0], nobsl=nobs.iloc[0],
count2=counts.iloc[1], nobs2=nobs.iloc[1],
method="wald", alpha=0.05



print("p-value:", pval)

## p-value: 8.389098566796607e-16
print(£"95% CI for difference: ({ci_low:.3f}, {ci_high:.3f})")

## 95Y, CI for difference: (-0.190, -0.116)

1.8 Fisher’s exact test

o If m@t, m1(1 —7), noft, na(l — 7) are not all greater than 5, then the approximate test cannot be
trusted. Instead you can use Fisher’s exact test:

from scipy.stats import fisher_exact

oddsratio, pvalue = fisher_exact(tab)
print("0Odds ratio:", oddsratio)

## Odds ratio: 0.5084667079317358

print("p-value:", pvalue)

## p-value: 1.0396837491279301e-15

e Again the p-value is seen to be extremely small, so we definitely reject the null hypothesis of equal
voteNo proportions for women and men.

1.9 Agresti: Overview of comparison of two groups

TABLE 7.10: Summary of Comparison Methods for Two Groups, for Independent
Random Samples

Type of Response Variable

Categorical Quantitative
Estimation
1. Parameter T — T n2 — @
2. Point estimate Ty — Yo — N1
< < - < 2 2
3. Standard error se = [Td=m) | m(l-72) se=.,/1 + 2
ny na ni nz
4. Confidence interval (my — 1) £ z(se) (2 — ¥1) % t(se)
Significance testing
1. Assumptions Randomization Randomization
=10 observations in each Normal population dist.’s
category, for each group (robust, especially for large n’s)
2. Hypotheses Hy: 7 = m) Hy: pp = w2
(g = a3 =0) (m2 — pm1 = 0)
H s mF T H,: K1 ¢_;L2
3. Test statistic g = { = Xzih
0
4. P-value Two-tail probability from standard normal or ¢

‘(Use one tail for one-sided alternative)
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