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1 The regression problem
1.1 We want to predict

• We will study the dataset trees, which is on the course website (and actually also already available in
R).

trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")

• In this experiment we have measurements of 3 variables for 31 randomly chosen trees:
• [,1] Girth numeric. Tree diameter in inches.
• [,2] Height numeric. Height in ft.
• [,3] Volume numeric. Volume of timber in cubic ft.
• We want to predict the tree volume, if we measure the tree height and/or the tree girth (diameter).
• This type of problem is called regression.
• Relevant terminology:

– We measure a quantitative response y, e.g. Volume.
– In connection with the response value y we also measure one (later we will consider several)

potential explanatory variable x. Another name for the explanatory variable is predictor.

1.2 Initial graphics
• Any analysis starts with relevant graphics.

library(mosaic)
library(GGally)
ggscatmat(trees) # Scatter plot matrix from GGally package
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• For each combination of the variables we plot the (x, y) values.
• It looks like Girth is a good predictor for Volume.
• If we only are interested in the association between two (and not three or more) variables we use the

usual gf_point function.

1.3 Simple linear regression
• We choose to use x=Girth as predictor for y=Volume. When we only use one predictor we are doing

simple regression.
• The simplest model to describe an association between response y and a predictor x is simple

linear regression.
• I.e. ideally we see the picture

y(x) = α + βx

where
– α is called the Intercept - the line’s intercept with the y-axis, corresponding to the response for

x = 0.
– β is called Slope - the line’s slope, corresponding to the change in response, when we increase the

predictor by one unit.
gf_point(Volume ~ Girth, data = trees) %>% gf_lm()

## Warning: Using the `size` aesthetic with geom_line was deprecated in ggplot2 3.4.0.
## i Please use the `linewidth` aesthetic instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
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1.4 Model for linear regression
• Assume we have a sample with joint measurements (x, y) of predictor and response.
• Ideally the model states that

y(x) = α + βx,

but due to random variation there are deviations from the line.
• What we observe can then be described by

y = α + βx + ε,

where ε is a random error, which causes deviations from the line.
• We will continue under the following fundamental assumption:

– The errors ε are normally distributed with mean zero and standard deviation σy|x.
• We call σy|x the conditional standard deviation given x, since it describes the variation in y around

the regression line, when we know x.

1.5 Least squares
• In summary, we have a model with 3 parameters:

– (α, β) which determine the line
– σy|x which is the standard deviation of the deviations from the line.

• How are these estimated, when we have a sample (x1, y1) . . . (xn, yn) of (x, y) values??
• To do this we focus on the errors

εi = yi − α − βxi

which should be as close to 0 as possible in order to fit the data best possible.
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• We will choose the line, which minimizes the sum of squares of the errors:
n∑

i=1
ε2

i =
n∑

i=1
(yi − α − βxi)2.

• If we set the partial derivatives to zero we obtain two linear equations for the unknowns (α, β), where
the solution (a, b) is given by:

b =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 and a = ȳ − bx̄

1.6 The prediction equation and residuals
• The equation for the estimates (α̂, β̂) = (a, b),

ŷ = a + bx

is called the prediction equation, since it can be used to predict y for any value of x.
• Note: The prediction equation is determined by the current sample. I.e. there is an uncertainty attached

to it. A new sample would without any doubt give a different prediction equation.
• Our best estimate of the errors is

ei = yi − ŷ = yi − a − bxi,

i.e. the vertical deviations from the prediction line.
• These quantities are called residuals.
• We have that

– The prediction line passes through the point (x̄, ȳ).
– The sum of the residuals is zero.

1.7 Estimation of conditional standard deviation
• To estimate σy|x we need Sum of Squared Errors

SSE =
n∑

i=1
e2

i =
n∑

i=1
(yi − ŷi)2,

which is the squared distance between the model and data.

• We then estimate σy|x by the quantity

sy|x =
√

SSE

n − 2

• Instead of n we divide SSE with the degrees of freedom df = n − 2. Theory shows, that this is
reasonable.

• The degrees of freedom df are determined as the sample size minus the number of parameters in the
regression equation.

• In the current setup we have 2 parameters: (α, β).

1.8 Example in R

model <- lm(Volume ~ Girth, data = trees)
summary(model)
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##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

• The estimated residuals vary from -8.065 to 9.578 with median 0.152.
• The estimate of Intercept is a = −36.9435
• The estimate of slope of Girth is b = 5.0659
• The estimate of the conditional standard deviation (called residual standard error in R) is sy|x = 4.252

with 31 − 2 = 29 degrees of freedom.

1.9 Test for independence
• We consider the regression model

y = α + βx + ε

where we use a sample to obtain estimates (a, b) of (α, β), an estimate sy|x of σy|x and the degrees of
freedom df = n − 2.

• We are going to test
H0 : β = 0 against Ha : β ̸= 0

• The null hypothesis specifies, that y doesn’t depend linearly on x.
• In other words the question is: Is the value of b far away from zero?
• It can be shown that b has standard error

seb =
sy|x√∑n

i=1(xi − x̄)2

with df degrees of freedom.
• So, we want to use the test statistic

tobs = b

seb

which has to be evaluated in a t-distribution with df degrees of freedom.

1.10 Example
• Recall the summary of our example:

summary(model)

##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

• As we noted previously b = 5.0659 and sy|x = 4.252 with df = 29 degrees of freedom.
• In the second column(Std. Error) of the Coefficients table we find seb = 0.2474.
• The observed t-score (test statistic) is then

tobs = b

seb
= 5.0659

0.2474 = 20.48

which also can be found in the third column(t value).
• The corresponding p-value is found in the usual way by using the t-distribution with 29 degrees of

freedom.
• In the fourth column(Pr(>|t|)) we see that the p-value is less than 2 × 10−16. This is no surprise since

the t-score was way above 3.

1.11 Confidence interval for slope
• When we have both the standard error and the reference distribution, we can construct a confidence

interval in the usual way:
b ± tcritseb,

where the t-score is determined by the confidence level and we find this value using qdist in R.

• In our example we have 29 degrees of freedom and with a confidence level of 95% we get tcrit =
qdist("t", 0.975, df = 29)= 2.045.

• If you are lazy (like most statisticians are):
confint(model)

## 2.5 % 97.5 %
## (Intercept) -43.825953 -30.060965
## Girth 4.559914 5.571799

• i.e. (4.56, 5.57) is a 95% confidence interval for the slope of Girth.

1.12 Correlation
• The estimated slope b in a linear regression doesn’t say anything about the strength of association

between y and x.
• Girth was measured in inches, but if we rather measured it in kilometers the slope is much larger: An

increase of 1km in Girth yield an enormous increase in Volume.
• Let sy and sx denote the sample standard deviation of y and x, respectively.
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• The corresponding t-scores
yt = y

sy
and xt = x

sx

are independent of the chosen measurement scale.
• The corresponding prediction equation is then

ŷt = a

sy
+ sx

sy
bxt

• i.e. the standardized regression coefficient (slope) is

r = sx

sy
b

which also is called the correlation between y and x.

• It can be shown that:
– −1 ≤ r ≤ 1
– The absolute value of r measures the (linear) strength of dependence between y and x.
– When r = 1 all the points are on the prediction line, which has positive slope.
– When r = −1 all the points are on the prediction line, which has negative slope.

• To calculate the correlation in R:
cor(trees)

## Girth Height Volume
## Girth 1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000

• There is a strong positive correlation between Volume and Girth (r=0.967).
• Note, calling cor on a data.frame (like trees) only works when all columns are numeric. Otherwise

the relevant numeric columns should be extracted like this:
cor(trees[,c("Height", "Girth", "Volume")])

which produces the same output as above.

• Alternatively, one can calculate the correlation between two variables of interest like:
cor(trees$Height, trees$Volume)

## [1] 0.5982497

2 R-squared: Reduction in prediction error
2.1 R-squared: Reduction in prediction error

• We want to compare two different models used to predict the response y.
• Model 1: We do not use the knowledge of x, and use ȳ to predict any y-measurement. The corresponding

prediction error is defined as

TSS =
n∑

i=1
(yi − ȳ)2

and is called the Total Sum of Squares.
• Model 2: We use the prediction equation ŷ = a + bx to predict yi. The corresponding prediction error

is then the Sum of Squared Errors

SSE =
n∑

i=1
(yi − ŷi)2.
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• We then define
r2 = TSS − SSE

TSS

which can be interpreted as the relative reduction in the prediction error, when we include x as
explanatory variable.

• This is also called the fraction of explained variation, coefficient of determination or simply
r-squared.

• For example if r2 = 0.65, the interpretation is that x explains about 65% of the variation in y, whereas
the rest is due to other sources of random variation.

2.2 Graphical illustration of sums of squares
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

## `geom_smooth()` using formula = 'y ~ x'
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Prediction rule 2

• Note the data points are the same in both plots. Only the prediction rule changes.
• The error of using Rule 1 is the total sum of squares E1 = TSS =

∑n
i=1(yi − ȳ)2.

• The error of using Rule 2 is the residual sum of squares (sum of squared errors) E2 = SSE =∑n
i=1(yi − ŷi)2.

2.3 r2: Reduction in prediction error
• For the simple linear regression we have that

r2 = TSS − SSE

TSS

is equal to the square of the correlation between y and x, so it makes sense to denote it r2.
• Towards the bottom of the output below we can read off the value r2 = 0.9353 = 93.53%, which is a

large fraction of explained variation.
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summary(model)

##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

3 Multiple regression model
3.1 Multiple regression model

• We look at data from Table 9.15 in Agresti. The data are measurements in the 67 counties of Florida.
• Our focus is on

– The response y: Crime which is the crime rate
– The predictor x1: Education which is proportion of the population with high school exam
– The predictor x2: Urbanisation which is proportion of the population living in urban areas

3.2 Example

FL <- read.delim("https://asta.math.aau.dk/datasets?file=fl-crime.txt")
head(FL, n = 3)

## Crime Education Urbanisation
## 1 104 82.7 73.2
## 2 20 64.1 21.5
## 3 64 74.7 85.0
library(mosaic)
splom(FL) # Scatter PLOt Matrix
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3.3 Correlations
• There is significant (p≈ 7 × 10−5) positive correlation (r=0.47) between Crime and Education
• Then there is also significant positive correlation (r=0.68) between Crime and Urbanisation

cor(FL)

## Crime Education Urbanisation
## Crime 1.0000000 0.4669119 0.6773678
## Education 0.4669119 1.0000000 0.7907190
## Urbanisation 0.6773678 0.7907190 1.0000000
cor.test(~ Crime + Education, data = FL)

##
## Pearson's product-moment correlation
##
## data: Crime and Education
## t = 4.2569, df = 65, p-value = 6.806e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2553414 0.6358104
## sample estimates:
## cor
## 0.4669119

3.4 Several predictors
• Both Education (x1) and Urbanisation (x2) are pretty good predictors for Crime (y).
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• We therefore want to consider the model

y = α + β1x1 + β2x2 + ϵ

• The errors ϵ are random noise with mean zero and standard deviation σy|x.
• The graph for the mean response is in other words a 2-dimensional plane in a 3-dimensional space.
• We determine estimates (a, b1, b2) for (α, β1, β2) via the least squares method, i.e deviations from the

plane.

3.5 Example

model <- lm(Crime ~ Education + Urbanisation, data = FL)
summary(model)

##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09

• From the output we find the prediction equation

ŷ = 59 − 0.58x1 + 0.68x2

• Not exactly what we expected based on the correlation.
• Now there appears to be a negative association between y and x1 (Simpsons Paradox)!
• We can also find the standard error (0.4725) and the corresponding t-score (-1.235) for the the slope of

Education
• This yields a p-value of 22%, i.e. the slope is not significantly different from zero.

3.6 Simpsons paradox
• The example illustrates Simpson’s paradox.
• When considered alone Education is a good predictor for Crime (with positive correlation).
• When we add Urbanisation, then Education has a negative effect on Crime (but not significant).
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• A possible explanation is illustrated by the graph above.
– Urbanisation has positive effect on both Education and Crime.
– For a given level of urbanisation there is a (non-significant) negative association between

Education and Crime.
– Viewed alone Education is a good predictor for Crime. If Education has a large value, then this

indicates a large value of Urbanisation and thereby a large value of Crime.

4 The general model
4.1 Regression model

• We have a sample of size n, where we have measured
– the response y.
– k potential predictors x1, x2, . . . , xk.

• Multiple regression model:
y = α + β1x1 + β2x2 + . . . + βkxk + ϵ.

• The errors ϵ are a sample from a population with mean zero and standard deviation σy|x.
• The systematic part of the model, i.e. when all errors are zero, says that the mean response is a

linear function of the predictors:

E(y|x1, x2, . . . , xk) = α + β1x1 + β2x2 + . . . + βkxk

• The symbol E is used here to denote expectation, i.e., mean value.

4.2 Interpretation of parameters
• In the multiple linear regression model

E(y|x1, x2, . . . , xk) = α + β1x1 + β2x2 + . . . + βkxk

– The parameter α is the Intercept, corresponding to the mean response, when all predictors are
equal to zero.

– The parameters (β1, β2, . . . , βk) are called partial regression coefficients.
• Imagine that all predictors but x1 are held fixed. Then y = α̃ + β1x1 is a line with slope β1, which

describes the rate of change in the mean response, when x1 is changed one unit. Here

α̃ = α + β2x2 + · · · + βkxk

is a constant number since we assumed all predictors but x1 was held fixed.
• The rate of change β1 does not depend on the value of the remaining predictors. In this case we say

that there is no interaction between the effects of the predictors on the response.
• The above holds similarly for the other partial regression coefficients.
• An example of a model with interaction is

E(y|x1, x2) = α + β1x1 + β2x2 + β3x1x2 = α + β2x2 + (β1 + β3x2)x1

• When we fix x2 the line has slope β1 + β3x2, which depends on the chosen value of x2.
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5 Estimation
5.1 Estimation of model

• The estimate (a, b1, b2, . . . , bk) for (α, β1, β2, . . . , βk) is determined by minimizing the sum of squared
errors.

• Based on this estimate we write the prediction equation as

ŷ = a + b1x1 + b2x2 + . . . + bkxk

• The distance between model and data is measured by the sum of squared erros

SSE =
n∑

i=1
e2

i =
n∑

i=1
(yi − ŷi)2.

• We estimate σy|x by the quantity

sy|x =
√

SSE

n − k − 1 .

• Rather than n we divide SSE by the degrees of freedom df = n − k − 1. Theory shows, that this is
reasonable.

• The degrees of freedom df are determined by the sample size minus the number of parameters in the
regression equation.

• Currently we have k + 1 parameters: 1 intercept and k slopes.

6 Multiple R-squared
6.1 Multiple R2

• We want to compare two models to predict the response y. Analogous to simple linear regression we
have the following setup:

• Model 1: We do not use the predictors, and use ȳ to predict any y-measurement. The corresponding
prediction error is

– TSS =
∑n

i=1(yi − ȳ)2 and is called the Total Sum of Squares.
• Model 2: We use the multiple prediction equation to predict y, i.e. the prediction error is

– SSE =
∑n

i=1(yi − ŷi)2 and is called Sum of Squared Errors.
• We then define the multiple coefficient of determination

R2 = TSS − SSE

TSS
.

• Thus, R2 is the relative reduction in prediction error, when we use x1, x2, . . . , xk as explanatory variables.
• It can be shown that the multiple correlation R =

√
R2 is the correlation between y and ŷ.

gf_point(predict(model) ~ FL$Crime) %>%
gf_lm() %>%
gf_labs(title = paste("Correlation between predicted and observed y ( r =", round(sqrt(summary(model)$r.squared),2), ")"),

x = "Crime",
y = expression(hat(y)))
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6.2 Example

summary(model)

##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09

• The prediction equation is ŷ = 59 − 0.58x1 + 0.68x2
• The estimate for σy|x is sy|x = 20.82 (Residual standard error in R) with df = 67 − 3 = 64 degrees

of freedom.
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• Multiple R2 = 0.4714, i.e. 47% of the variation in the response is explained by including the predictors
in the model.

• The estimate b1 = −0.5834 has standard error (Std. Error) se = 0.4725 with corresponding t-score (t
value) tobs = −0.5834

0.4725 = −1.235.
• The hypothesis H0 : β1 = 0 has the t-score tobs = −1.235, which means that b1 isn’t significantly

different from zero, since the p-value (Pr(>|t|)) is 22%. That means that we should exclude Education
as a predictor.

6.3 Example
• Our final model is then a simple linear regression:

model2 <- lm(Crime ~ Urbanisation, data = FL)
summary(model2)

##
## Call:
## lm(formula = Crime ~ Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.766 -16.541 -4.741 16.521 49.632
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.54125 4.53930 5.406 9.85e-07 ***
## Urbanisation 0.56220 0.07573 7.424 3.08e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.9 on 65 degrees of freedom
## Multiple R-squared: 0.4588, Adjusted R-squared: 0.4505
## F-statistic: 55.11 on 1 and 65 DF, p-value: 3.084e-10

• The coefficient of determination always decreases, when the model is simpler. Now we have R2 = 46%,
where before we had 47%. But the decrease is not significant.

7 F-test for effect of predictors
7.1 F-test

• We consider the hypothesis
H0 : β1 = β2 = . . . = βk = 0

against the alternative, that at least one of these are non-zero.
• As test statistic we use

Fobs = (n − k − 1)R2

k(1 − R2)

• Large values of R2 implies large values of F , which points to the alternative hypothesis.
• I.e. when we have calculated the observed value Fobs, then we have to find the probability that a new

experiment would result in a larger value.
• It can be shown that the reference distribution is (can be approximated by) a so-called F-distribution

with degrees of freedom df1 = k and df2 = n − k − 1.
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7.2 Example
• We return to Crime and the prediction equation ŷ = 59−0.58x1 +0.68x2, where n = 67 and R2 = 0.4714.

We have
– df1 = k = 2 since we have 2 predictors.
– df2 = n − k − 1 = 67 − 2 − 1 = 64.
– Then we can calculate Fobs = (n−k−1)R2

k(1−R2) = 28.54
• To evaluate the value 28.54 in the relevant F-distribution:

1 - pdist("f", 28.54, df1=2, df2=64)
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A:1.000

## [1] 1.378612e-09

• So p-value=1.38 × 10−9 (notice we don’t multiply by 2 since this is a one-sided test; only large values
point more towards the alternative than the null hypothesis).

• All this can be found in the summary output we already have:
summary(model)

##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
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## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09

8 Test for interaction
8.1 Interaction between effects of predictors

• Could it be possible that a combination of Education and Urbanisation is good for prediction? We
want to investigate this using the model

E(y|x1, x2) = α + β1x1 + β2x2 + β3x1x2,

where we have extended with a possible effect of the product x1x2:
model3 <- lm(Crime ~ Education * Urbanisation, data = FL)
summary(model3)

##
## Call:
## lm(formula = Crime ~ Education * Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35.181 -15.207 -6.457 14.559 49.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.31754 49.95871 0.387 0.700
## Education 0.03396 0.79381 0.043 0.966
## Urbanisation 1.51431 0.86809 1.744 0.086 .
## Education:Urbanisation -0.01205 0.01245 -0.968 0.337
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.83 on 63 degrees of freedom
## Multiple R-squared: 0.4792, Adjusted R-squared: 0.4544
## F-statistic: 19.32 on 3 and 63 DF, p-value: 5.371e-09

• When we look at the p-values in the table nothing is significant at the 5% level!
• But the F-statistic tells us that the predictors collectively have a significant prediction ability.
• Why has the highly significant effect of x2 disappeared? Because the predictors x1 and x1x2 are able to

explain the same as x2.
• Previously we only had x1 as alternative explanation to x2 - and that wasn’t enough.
• The phenomenon is called multicollinearity and illustrates that we can have different models with

equally good predictive properties.
• In this case we will choose the model with x2 since it is simpler.
• However, in general it can be difficult to choose between models. For example, if both height and weight

are good predictors of some response, but one of them can be left out, which one do we choose?
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9 The regression problem
9.1 Example

• We will study the dataset in Agresti Table 13.1 available as Income.txt on the course website. We
read in data in RStudio

Income <- read.delim("https://asta.math.aau.dk/datasets?file=Income.txt")

• We have a sample with measurements of 3 variables:
– y=income: Quantitative variable, which is yearly income. This will be our response.
– x=education: Quantitative predictor, which is the number of years of education.
– z=race: Explanatory factor with levels b(black), h(hispanic) and w(white).

• We always start with some graphics (remember the function gf_point for plotting points and gf_lm
for adding a regression line).

library(mosaic)
gf_point(inc ~ educ, color = ~race, data = Income) %>% gf_lm()
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• An unclear picture, but a tendency to increasing income with increasing education.
• The trend lines for the three races are different. But is the difference significant? Or can the difference

be explained by sampling variation?
• Such a regression with both qualitative and quantitative predictors is called an analysis of covariance

(ANCOVA). When the model only contains qualitative predictors, the problem is known as analysis of
variance (ANOVA) which we briefly mention at the end.
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10 Dummy coding
10.1 Dummy coding

• First, we will look at the model without interaction, i.e. the effect of education is the same for all
races, which corresponds to parallel lines.

• We also have to introduce dummy coding of the factor z:

– z1 = 1 if race=b and zero otherwise
– z2 = 1 if race=h and zero otherwise

• This determines the regression model:

E(y|x, z) = α + βx + β1z1 + β2z2

which corresponds to parallel regressions lines for each race.

• w: (z1 = 0, z2 = 0) E(y|x) = α + βx

• b: (z1 = 1, z2 = 0) E(y|x) = α + β1 + βx.

• h: (z1 = 0, z2 = 1) E(y|x) = α + β2 + βx.

• β1 is the difference in Intercept between black and white.

• β2 is the difference in Intercept between Hispanic and white.

10.2 Example
• We want to tell R that we want race to be a factor (grouping variable) and we want w as reference level

for race (default is lexicographical ordering, i.e. (b, h, w) and b would then be the reference):
Income$race <- factor(Income$race)
Income$race <- relevel(Income$race, "w")

• Then we use + in the model formula to only have additive effects of educ and race, i.e. a model without
interaction:

model1 <- lm(inc ~ educ + race, data = Income)
summary(model1)

##
## Call:
## lm(formula = inc ~ educ + race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.664 -9.622 -1.642 6.552 57.620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.6635 8.4121 -1.862 0.0665 .
## educ 4.4317 0.6191 7.158 4.42e-10 ***
## raceb -10.8744 4.4730 -2.431 0.0174 *
## raceh -4.9338 4.7632 -1.036 0.3036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.46 on 76 degrees of freedom
## Multiple R-squared: 0.462, Adjusted R-squared: 0.4408
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## F-statistic: 21.75 on 3 and 76 DF, p-value: 2.853e-10

• The common slope to educ is estimated to be β̂ = 4.4316685, with corresponding p-value=4.42 × 10−10

which is significantly different from zero.
• There is a clear positive effect of educ on income.
• The estimate for w-intercept is α̂ = −15.6635, which isn’t significantly different from zero if we test at

level 5% (this test is not really of interest).
• The difference between b- and w-intercept (raceb) is β̂1 = −10.8744, which is significant with

p-value=1.74%.
• There is no significant difference between h- and w-intercept.

plotModel(model1)
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10.3 Example: Prediction equations

summary(model1)

##
## Call:
## lm(formula = inc ~ educ + race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.664 -9.622 -1.642 6.552 57.620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.6635 8.4121 -1.862 0.0665 .
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## educ 4.4317 0.6191 7.158 4.42e-10 ***
## raceb -10.8744 4.4730 -2.431 0.0174 *
## raceh -4.9338 4.7632 -1.036 0.3036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.46 on 76 degrees of freedom
## Multiple R-squared: 0.462, Adjusted R-squared: 0.4408
## F-statistic: 21.75 on 3 and 76 DF, p-value: 2.853e-10

• Reference/baseline group (white):
ŷ = −15.66 + 4.43x

• Black:
ŷ = −15.66 − 10.87 + 4.43x = −26.54 + 4.43x

• Hispanic:
ŷ = −15.66 − 4.93 + 4.43x = −20.60 + 4.43x

10.4 Agresti – summary

11 Model with interaction
11.1 Interaction

• In the following we will expand the model to include interaction between the effects of race and education
on income. Before proceeding, let us recall what interaction means (and doesn’t mean) in this context:
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• Interaction between the effects of race and education on income does not mean that the values of
education and race themselves are related or affect each other.

• Interaction between the effects of race and education on income means that the relationship between
education and income depends on the value of race. I.e. for each fixed value of race the slope of the line
relating education and income may have a different value.

• Often we just refer to this as “interaction between education and race” when it really should read
“interaction between the effects of race and education on income”.

11.2 Interaction
• We will expand the regression model, so we include interaction between x and z1 respectively z2:

E(y|x, z) = α + βx + β1z1 + β2z2 + β3z1x + β4z2x.

• This yields a regression line for each race:
• w (z1 = 0, z2 = 0): E(y|x) = α + βx
• b (z1 = 1, z2 = 0): E(y|x) = α + β1 + (β + β3)x.
• h (z1 = 0, z2 = 1): E(y|x) = α + β2 + (β + β4)x.
• β1 is the difference in Intercept between black and white, while β3 is the difference in slope

between black and white.
• β2 is the difference inIntercept between Hispanic and white, while β4 is the difference in slope

between Hispanic and white.

11.3 Example: Prediction equations
• When we use * in the model formula we include interaction between educ and race:

model2 <- lm(inc ~ educ * race, data = Income)
summary(model2)

##
## Call:
## lm(formula = inc ~ educ * race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.064 -9.448 -1.453 6.167 56.936
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -25.8688 10.4982 -2.464 0.0161 *
## educ 5.2095 0.7828 6.655 4.3e-09 ***
## raceb 19.3333 18.2928 1.057 0.2940
## raceh 9.2640 24.2797 0.382 0.7039
## educ:raceb -2.4107 1.4177 -1.700 0.0933 .
## educ:raceh -1.1208 2.0060 -0.559 0.5781
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.37 on 74 degrees of freedom
## Multiple R-squared: 0.4825, Adjusted R-squared: 0.4475
## F-statistic: 13.8 on 5 and 74 DF, p-value: 1.618e-09

• Reference/baseline group (white):
ŷ = −25.87 + 5.21x
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• Black:
ŷ = −25.87 + 19.33 + (5.21 − 2.41)x = −6.54 + 2.80x

• Hispanic:
ŷ = −25.87 + 9.26 + (5.21 − 1.12)x = −16.60 + 4.09x

11.4 Example: Individual tests

summary(model2)

##
## Call:
## lm(formula = inc ~ educ * race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.064 -9.448 -1.453 6.167 56.936
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -25.8688 10.4982 -2.464 0.0161 *
## educ 5.2095 0.7828 6.655 4.3e-09 ***
## raceb 19.3333 18.2928 1.057 0.2940
## raceh 9.2640 24.2797 0.382 0.7039
## educ:raceb -2.4107 1.4177 -1.700 0.0933 .
## educ:raceh -1.1208 2.0060 -0.559 0.5781
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.37 on 74 degrees of freedom
## Multiple R-squared: 0.4825, Adjusted R-squared: 0.4475
## F-statistic: 13.8 on 5 and 74 DF, p-value: 1.618e-09

• The difference in slope between b and w (educ:raceb) is estimated to β̂3 = −2.4107. With p-
value=9.33% there is no significant difference.

• Furthermore, there isn’t any significant difference of slope between h and w. In other words there is
probably not interaction between educ and race.

gf_point(inc ~ educ, color = ~ race, data = Income) %>% gf_lm()
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12 Test for no interaction
12.1 Test for no interaction

plotModel(model1)
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plotModel(model2)
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summary(model1)$r.squared

## [1] 0.4619906
summary(model2)$r.squared

## [1] 0.4824822

• Is model2 significantly better than model1? I.e. is R2 significantly higher for model2?

12.2 Hypothesis and test statistic
• The simpler model1 is obtained from the more complicated model2 by setting β3 = 0 and β4 = 0, so the

null hypothesis “the simpler additive model describes data sufficiently well compared to the complicated
interaction model” is really the simple mathematical hypothesis:

H0 : β3 = 0, β4 = 0.

• We will look at the difference between R2 for the two models, but as before (for multiple linear regression)
we have to convert this to an F statistic which we can then calculate a p-value for.

• Formula for Fobs (no need to learn this by heart):

Fobs = (R2
2 − R2

1)/(df1 − df2)
(1 − R2

2)/df2
where df1 and df2 are n minus the number of model parameters for the two models (i.e. 80-4=76 and
80-6=74 in our case).

• The formula for Fobs can be rewritten in terms of sums of squared errors (SSE) for each model (no
need to memorize it):

Fobs = (SSE1 − SSE2)/(df1 − df2)
(SSE2)/df2

.
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• In the literature SSE is sometimes denoted by RSS for Residual Sums of Squares; i.e SSE = RSS.

12.3 Test for no interaction in R
• In R the calculations are done using anova:

anova(model1, model2)

## Analysis of Variance Table
##
## Model 1: inc ~ educ + race
## Model 2: inc ~ educ * race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 76 18164
## 2 74 17472 2 691.84 1.465 0.2377

• The F-test for dropping the interaction educ:race has F-value=1.465, which in no way is significant
with p-value=23.77%.

13 Hierarchy of models
13.1 Hierarchy of models

• Interaction: The most general model with main effects educ and race and interaction educ:race:
Interaction <- lm(inc ~ educ * race, data = Income)

• MainEffects: The model where there are additive effects of educ and race.
MainEffects <- lm(inc ~ educ + race, data = Income)

• educEff: Model where there only is an effect of educ (simple lin. reg.).
educEff <- lm(inc ~ educ, data = Income)

• raceEff: Model where there only is an effect of race (a different mean for each group – more on this
later).

raceEff <- lm(inc ~ race, data = Income)

• We can, corresponding to Agresti Table 13.10, make F-tests for 3 pairwise comparisons of models.

13.2 Example
• Comparing MainEffects and Interaction is what we have already done.

anova(MainEffects, Interaction)

## Analysis of Variance Table
##
## Model 1: inc ~ educ + race
## Model 2: inc ~ educ * race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 76 18164
## 2 74 17472 2 691.84 1.465 0.2377

• We recognize F = 1.465 with p-value=23.77%, i.e. model2 isn’t significantly better than model1. So no
educ:race interaction.
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• In the same manner we can compare educEff and MainEffects. I.e. we investigate whether the effect
of race can be left out.

anova(educEff, MainEffects)

## Analysis of Variance Table
##
## Model 1: inc ~ educ
## Model 2: inc ~ educ + race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 78 19625
## 2 76 18164 2 1460.6 3.0556 0.05292 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• If any, the effect of race is weak with p-value=5.292%.

• Finally, we compare raceEff and MainEffects. Clearly educ cannot be left out (P-value=4.422×10−10).
anova(raceEff, MainEffects)

## Analysis of Variance Table
##
## Model 1: inc ~ race
## Model 2: inc ~ educ + race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 77 30410
## 2 76 18164 1 12245 51.235 4.422e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

13.3 Model with only a single categorical preditor
• The model called raceEff above has a different mean income for each race.

– α is the mean income for the reference grouph (w)
– β1 is the difference between the b and w in mean income
– β2 is the difference between the h and w in mean income

• Mathematically
E(y|z) = α + β1z1 + β2z2

– w: (z1 = 0, z2 = 0) E(y|x) = α
– b: (z1 = 1, z2 = 0) E(y|x) = α + β1.
– h: (z1 = 0, z2 = 1) E(y|x) = α + β2.

• Graphically (notice we don’t have lines anymore since there is no quantitative predictor – predicted
means are indicated with crosses on the figure):

gf_point(inc ~ race, data = Income, color = ~race) %>%
gf_jitter(width = 0.1) %>%
gf_point(mean ~ race, data = favstats(inc ~ race, data = Income),

size = 6, shape = 4, stroke = 2, show.legend = FALSE)
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• Summary of the fitted model:
summary(raceEff)

##
## Call:
## lm(formula = inc ~ race, data = Income)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.48 -12.48 -4.48 7.52 77.52
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.480 2.810 15.115 <2e-16 ***
## raceb -14.730 5.708 -2.581 0.0118 *
## raceh -11.480 6.009 -1.910 0.0598 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.87 on 77 degrees of freedom
## Multiple R-squared: 0.0993, Adjusted R-squared: 0.0759
## F-statistic: 4.244 on 2 and 77 DF, p-value: 0.01784

• Here we see:
– Significant overall effect of race since H0 : β1 = β2 = 0 is rejected based on p-value of 1.78%
– Difference between w and b is significant (p-value is 1.18%)
– Difference between w and h is nearly significant (p-value is 5.98%)
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13.4 Example with more predictors
• The methods generalize to models with more than 2 predictors.
• We return to the dataset Ericksen, where we study the response crime:

Ericksen <- read.delim("https://asta.math.aau.dk/datasets?file=Ericksen.txt")
model <- lm(crime ~ city * highschool + city * poverty, data = Ericksen)

• The variables are:
– crime: Quantitative variable
– city: city or state
– highschool: Quantitative variable
– poverty: Quantitative variable

• The model has 3 predictors with main effects and includes
– interaction between city and highschool
– interaction between city and poverty.

summary(model)

##
## Call:
## lm(formula = crime ~ city * highschool + city * poverty, data = Ericksen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -38.741 -8.745 -1.557 7.820 47.470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.1456 18.1254 3.373 0.001305 **
## citystate 18.1526 20.4131 0.889 0.377413
## highschool -1.5711 0.6062 -2.592 0.011979 *
## poverty 5.3105 1.4333 3.705 0.000463 ***
## citystate:highschool 0.7025 0.7327 0.959 0.341523
## citystate:poverty -5.1862 1.6619 -3.121 0.002773 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.16 on 60 degrees of freedom
## Multiple R-squared: 0.6577, Adjusted R-squared: 0.6292
## F-statistic: 23.06 on 5 and 60 DF, p-value: 7.748e-13

• There isn’t significant (p-value=34.1523%) interaction between city and highschool.
• I.e. the effect of highschool on crime is the same in metropolitan areas (city=city) and the non-

metropolitan areas (city=state).
• There is clearly (p-value=0.2773%) interaction between city and poverty.
• I.e. the effect of poverty on crime is different in metropolitan and non-metropolitan areas.
• For city=state, the effect of poverty (on crime) is smaller than in the major cities.
• Hence, poverty has larger effect on crime in the major cities than in the states outside the major cites.
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