Quality Control

The ASTA team

Contents

0.1 Outline

- **Continuous process variable**
- **Binomial process variable**
- **Poisson process variable**

1 Quality control

1.1 Quality control chart

Control charts are used to routinely monitor quality.

Two major types:

- **univariate control**: a graphical display (chart) of one quality characteristic
- **multivariate control**: a graphical display of a statistic that summarizes or represents more than one quality characteristic

The control chart shows

- the value of the quality characteristic versus the sample number or versus time
- a **center line** (CL) that represents the mean value for the in-control process
- an **upper control limit** (UCL) and a **lower control limit** (LCL)

The control limits are chosen so that almost all of the data points will fall within these limits **as long as the process remains in-control**.

1.2 Example

```
library(qcc)
data(pistonrings)
head(pistonrings,3)
## diameter sample trial
```
1 74.030 1 TRUE ## 2 74.002 1 TRUE ## 3 74.019 1 TRUE

Piston rings for an automotive engine are produced by a forging process. The inside diameter of the rings manufactured by the process is measured on 25 samples(sample=1,2,..,25), each of size 5, for the control phase I (trial=TRUE), when preliminary samples from a process being considered 'in-control' are used to construct control charts. Then, further 15 samples, again each of size 5, are obtained for phase II (trial=FALSE).

Reference:

Montgomery, D.C. (1991) Introduction to Statistical Quality Control, 2nd ed, New York, John Wiley & Sons, pp. 206-213

1.3 Example

We shall treat different methods for determining LCL,CL and UCL. In that respect, it is crucial that we have

- **phase I data**, where the process is in-control.
- These data are used to determine LCL,CL and UCL.

1.4 The simple six sigma model

Assume that measurements

- is a sample, i.e they are independent
- they have a normal distribution
- we know the mean μ_0 and standard deviation σ_0 .

In this case we dont need phase I data.

- $CL=\mu_0$.
- LCL= $\mu_0 k\sigma_0$.
- UCL= $\mu_0 + k\sigma_0$.

The only parameter to determine is *k*.

We dont want to give a lot of false warnings, and a popular choise is

- k=3, known as the $3*$ sigma rule.
- The probability of a measurement outside the control limits is then 0.27%, when the proces is in-control.

This means that the span of allowable variation is $6\sigma_0$.

The concept "Six Sigma'' has become a mantra in many industrial communities.

1.5 Average Run Length (ARL)

Let pOut denote the probability that a measurement is outside the control limits. On average this means that we need 1*/*pOut observations before we get an outlier.

This is known as the *the Average Run Length*:

$$
AVL = \frac{1}{\text{pOut}}
$$

An in-control process with the 3*sigma rule has AVL

round(1**/**(2***pdist**("norm", -3, plot = FALSE)))

[1] 370

An in-control process with AVL=500 has k*sigma rule, where k equals **-qdist**("norm", (1**/**2)*****(1**/**500), plot = FALSE)

[1] 3.090232

1.6 Types of quality control charts.

Depending on the type of control variable, there are various types of control charts.

#Continuous process variable

1.7 Continuous process variable

Phase I data:

- *m* samples with *n* measurements in each sample.
- For sample $i = 1, 2, \ldots m$ calculate mean \bar{x}_i and standard deviation s_i .

• Calculate

$$
\bar{x} = \frac{1}{m} \sum_{i=1}^{m} \bar{x}_i \quad \text{and} \quad \bar{s} = \frac{1}{m} \sum_{i=1}^{m} s_i
$$

When the sample is normal, it can be shown that \bar{s} is a biased estimate of the true standard deviation *σ*:

- $E(\bar{s}) = c_4(n)\sigma$
- $c_4(n)$ is tabulated in textbooks and available in the qcc package.

Unbiased estimate of *σ*:

$$
\hat{\sigma}_1 = \frac{\bar{s}}{c_4(n)}
$$

Furthermore \bar{s} has estimated standard error

$$
se(\bar{s}) = \bar{s} \frac{\sqrt{1 - c_4(n)^2}}{c_4(n)}
$$

1.8 xbar chart

UCL:
$$
\bar{x} + 3\frac{\hat{\sigma}_1}{\sqrt{n}}
$$

CL: \bar{x}
LCL: $\bar{x} - 3\frac{\hat{\sigma}_1}{\sqrt{n}}$

This corresponds to

• The probability of a measurement outside the control limits is 0.27%.

If we want to change this probability, we need another z-score. E.g if we want to lower this probability to 0.1%, then 3 should be substituted by 3*.*29.

1.9 Example

```
phaseI <- matrix(pistonrings$diameter[1:125] , nrow=25, byrow=TRUE)
phaseII <- matrix(pistonrings$diameter[126:200], nrow=25, byrow=TRUE)
h <- qcc(phaseI, type = "xbar", std.dev = "UWAVE-SD",
         newdata = phaseII, title = "xbar chart: pistonrings")
```
- phaseI is a matrix with $m = 25$ rows, where each row is a sample of size $n = 5$.
- Similarly phaseII has 15 samples.

The function qcc calculates the necessary statistics and optionally makes a plot.

- phaseI and type= are the only arguments required.
- We want that the limits are based on the unweighted average of standard deviations UWAVE-SD. This is not the default.
- We also want to evaluate the phase II data: newdata=phaseII.
- Optionally, we can specify the title on the plot.

1.10 Example

Besides limits we are also told whether the process is above/below CL for 7 or more consecutive samples (yellow dots).

run.length=7 is default, but may be changed. If we e.g. want this to happen with probability 0.2%, then we specify run.length=10.

1.11 S chart: Monitoring variability

In most situations, it is crucial to monitor the process mean.

But it may also be a problem if the variability in "quality" gets too high.

In that respect, it is relevant to monitor the standard deviation, which is done by the S-chart:

UCL:
$$
\bar{s} + 3se(\bar{s})
$$

\nCL: \bar{s}
\nLCL: $\bar{s} - 3se(\bar{s})$
\n $se(\bar{s}) = \bar{s} \frac{\sqrt{1 - c_4(n)^2}}{c_4(n)}$

Where 3 may be substituted by some other z-score depending on the required confidence level. h <- **qcc**(phaseI,type="S", newdata=phaseII, title="S chart: pistonrings")

1.12 S chart example

Remark that the plot does not allow values below zero.

Quite sensible when we are talking about standard deviations.

1.13 R chart: Range statistics

If the sample size is relatively small $(n \leq 10)$, it is custom to use the range *R* instead of the standard deviation. The range of a sample is simply the difference between the largest and smallest observation.

When the sample is normal, it can be shown that:

- $E(\overline{R}) = d_2(n)\sigma$, where \overline{R} is the average of the *m* sample ranges.
- $d_2(n)$ is tabulated in textbooks and available in the \texttt{qcc} package.

Unbiased estimate of *σ*:

$$
\hat{\sigma}_2=\frac{\bar{R}}{d_2(n)}
$$

Furthermore \overline{R} has estimated standard error

$$
se(\bar{R}) = \bar{R}\frac{d_3(n)}{d_2(n)}
$$

 $d_3(n)$ is tabulated in textbooks and available in the \texttt{qcc} package.

1.14 Charts based on R

xbar chart based on \bar{R} :

UCL:
$$
\bar{x} + 3\frac{\hat{\sigma}_2}{\sqrt{n}}
$$

CL: \bar{x}
LCL: $\bar{x} - 3\frac{\hat{\sigma}_2}{\sqrt{n}}$

This is actually the default in the qcc package.

R chart to monitor variability:

UCL:
$$
\bar{R} + 3se(\bar{R})
$$

CL: \bar{R}
LCL: $\bar{R} - 3se(\bar{R})$

1.15 R chart example

h <- **qcc**(phaseI, type="R", newdata=phaseII, title="R chart: pistonrings")

2 Binomial process variable

2.1 Binomial variation

Let us suppose that the production process operates in a stable manner such that

• the probability that an item is defect is *p*.

• successive items produced are independent

In a random sample of n items, the number D of defective items follows a binomial distribution with parameters *n* and *p*.

Unbiased estimate of *p*:

$$
\hat{p}=\frac{D}{n}
$$

which has standard error

$$
se(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}
$$

2.2 p chart

Data from phase I:

- *m* samples with estimated proportions \hat{p}_i , $i = 1, ..., m$
- \bar{p} is the average of the estimated proportions.

p chart:

UCL:
$$
\bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}
$$

CL: \bar{p}
LCL: $\bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$

2.3 Example

data(orangejuice) **head**(orangejuice, 3)

Production of orange juice cans.

- The data were collected as 30 samples of 50 cans.
- The number of defective cans D were observed.
- After the first 30 samples, a machine adjustment was made.
- Then further 24 samples were taken from the process.

with(orangejuice,

```
qcc(D[trial], sizes=size[trial], type="p",
   newdata=D[!trial], newsizes=size[!trial]))
```
2.4 Example

The machine adjustment after sample 30 has had an obvious effect.

The chart should be recalibrated.

3 Poisson process variable

3.1 Poisson variation

Let us suppose that the production process operates in a stable manner such that

• defective items are produced at a constant rate

The number D of defective items over a time interval of some fixed length follows a poisson distribution with mean value *c*.

Unbiased estimate of *c*:

 $\hat{c} = D$

which has standard error

 $se(\hat{c}) = \sqrt{c}$

3.2 c chart

Data from phase I:

- *m* sampling periods with mean estimates $\hat{c}_i, i = 1, \ldots, m$
- \bar{c} is the average of the estimated means.

c chart:

