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1 Basic principle
Monte Carlo (MC) estimation of the probability of event A:

• Run an experiment N times, and count how many times A occurred, NA, say

P (A) ≈ NA

N

(Frequentist)
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1.1 Many, many simulations
Letting the number of experiments approach infinity, ≈ becomes =:

P (A) = lim
N→∞

NA

N

2 Example 1
Recall (lecture 1.2):

• John Kerrich, a South African mathematician, was visiting Copenhagen when World War II broke out.
Two days before he was scheduled to fly to England, the Germans invaded Denmark. Kerrich spent the
rest of the war interned at a camp in Hald Ege near Viborg, Jutland. To pass the time he carried out a
series of experiments in probability theory. In one, he tossed a coin 10,000 times.

• The first 25 observations were (0 = tail, 1 = head):

0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, . . .

• Plot of the empirical probability p̂ of getting a head against the number of tosses n:
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(The horizontal axis is on a log scale).

3 (Pseudo) random number generation

sample(1:10, 2)

## [1] 6 9
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sample(1:10, 2)

## [1] 2 10

set.seed(48)
sample(1:10, 2)

## [1] 5 3

set.seed(48)
sample(1:10, 2)

## [1] 5 3

4 Example 1 - cont’d
Let the computer toss the coin (MC simulation):
set.seed(48)
x2 <- sample(c(0, 1), 10000, replace = TRUE, prob = c(0.5, 0.5))
head(x2)

## [1] 0 1 1 1 1 1

• Black: John Kerrich
• Red: MC
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5 Example 2
Recall (lection 2.1):

3



• A company produces cylindrical components for automobiles. It is important that the mean component
diameter is µ = 5mm. The standard deviation is σ = 0.1mm.

• An engineer takes a random sample of n = 100 components. These have an average diameter of
x̄ = 5.027. Is it reasonable to think µ = 5?

• If the population of components has the correct mean, then

X̄ ≈ norm
(

µ,
σ√
n

)
= norm

(
5,

0.1√
100

)
= norm(5, 0.01).

• For the actual sample this gives the observed z-score

zobs = x̄ − 5
0.01 = 2.7

which should come from an approximate standard normal distribution.

• The probability of getting a higher z-score is:
prob <- 1 - pdist("norm", mean = 0, sd = 1, q = 2.7, xlim = c(-4, 4))
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## [1] 0.0035

• Thus, it is highly unlikely that a random sample has such a high z-score. A better explanation might
be that the produced components have a population mean larger than 5mm.

Use MC simulation:
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set.seed(48)
N <- 10000
result <- rnorm(n = N, mean = 5, sd = 0.1/sqrt(100))
sprintf("%0.5f", head(result))

## [1] "5.00200" "4.97220" "4.99304" "5.02075" "5.00790" "5.00490"

hist(result)

Histogram of result

result

F
re

qu
en

cy

4.96 4.98 5.00 5.02 5.04

0
50

0
10

00
15

00
20

00

sum(result >= 5.027)

## [1] 34

sum(result >= 5.027)/N

## [1] 0.0034

prob1 <- mean(result >= 5.027)
prob1

## [1] 0.0034

prob1

## [1] 0.0034

prob

## [1] 0.0035
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prob1 - prob

## [1] -6.7e-05

(prob1 - prob)/prob

## [1] -0.019

6 More complicated simulations
• sample()
• rnorm()
• replicate():

set.seed(48)
x2 <- sample(c(0, 1), 10000, replace = TRUE, prob = c(0.5, 0.5))
mean(x2)

## [1] 0.49

set.seed(48)
x2 <- replicate(N, {

sample(c(0, 1), 1, prob = c(0.5, 0.5))
})
mean(x2)

## [1] 0.49

7 Variance is important
• Average of 45M and 55M is 50M
• Average of 1M and 99M is 50M

Averages are not always sufficient. Think of budgets:

• On average the profit will be 50M
– But. . . What is the risk that it will become e.g. below 20M?
– . . . or 0 even?

• What is the probability that it is e.g. below 0 (deficit)?

8 Example 3: Bivariate reliability problem
Limit state function:

• defines failure criterion
• function of all random variables
• failure when g(. . .) ≤ 0

8.1 Model
g(B, C) = B − C ≤ 0

• B ∼ N (100, 10): budget of a given project (in $1,000)
• C ∼ N (50, 10): expected costs (in $1,000)
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Assess

P (g(B, C) < 0)

8.2 Simulations

set.seed(48)
N <- 100000
Bdata <- rnorm(N, mean = 100, sd = 10)
Cdata <- rnorm(N, mean = 50, sd = 10)
gdata <- Bdata - Cdata

sum(gdata < 0)

## [1] 21

prob1 <- mean(gdata < 0)
prob1

## [1] 0.00021

8.3 Results

plot(Bdata, Cdata)
abline(a = 0, b = 1, col = "red", lwd = 3)
points(Bdata[gdata < 0], Cdata[gdata < 0], col = "red")
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8.4 Theoretical answer
For the particular case, we can exploit that the sum of two normal distributions is also a normal distribution,
and due to independence the variance is the sum of the two variances:
g_mean <- 100 - 50
g_var <- 10ˆ2 + 10ˆ2
prob <- pdist("norm", q = 0,

mean = g_mean,
sd = sqrt(g_var), plot = FALSE)

prob

## [1] 2e-04

prob - prob1

## [1] -6.5e-06

(prob - prob1) / prob

## [1] -0.032

9 Sensitivity
• B ∼ N (100, 10): budget of a given project (in $1,000)
• C ∼ N (50, 10): expected costs (in $1,000)
• g(B, C) = B − C

How does
P (g(B, C) < 0)

depend on the variance/standard deviations?

9.1 Illustrating g(B, C) < 0
Area where red is larger than blue illustrates P (g(B, C) < 0):
plotDist("norm", mean = 100, sd = 10,

xlim = c(10, 175), col = "blue")
plotDist("norm", mean = 50, sd = 10,

add = TRUE, col = "red")
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9.2 sapply, lapply, for loops
Using sapply (other possibilities: lapply, for loops):
set.seed(48)
N <- 100000
sigmas <- seq(5, 50, length.out = 50)
probs <- sapply(sigmas, function(sigma) {

Bdata <- rnorm(N, mean = 100, sd = sigma)
Cdata <- rnorm(N, mean = 50, sd = sigma)
gdata <- Bdata - Cdata
mean(gdata < 0)

})

plot(sigmas, probs, type = "l")
abline(h = prob1)
abline(v = 10)

10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

sigmas

pr
ob

s

10 Example 4: Wholesales offer
• Newly established business with a innovative product
• Decided to apply for a patent

– 40% chance to get patent

10.1 No patent
The expected sales for next year is $1-$9 mio. with $3 mio. being the most likely value.

Triangular distribution:
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plotDist("tri", params = list(min = 1, max = 9, mode = 3))
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10.2 With patent
Sales goes up 25%-75% with 50% percent being the most likely value

Triangular distribution:
plotDist("tri", params = list(min = 0.25, max = 0.75, mode = 0.5))
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10.3 Simulating sales

set.seed(48)
N <- 10000
got_patent <- sample(x = c(0, 1), prob = c(0.6, 0.4), size = N, replace = TRUE)
table(got_patent)

## got_patent
## 0 1
## 5935 4065

sales_base <- rtri(N, min = 1, max = 9, mode = 3)
patent_markup <- rtri(N, min = 0.25, max = 0.75, mode = 0.5)
sales <- sales_base + got_patent*patent_markup*sales_base
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hist(sales)

Histogram of sales
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sales_avg <- mean(sales)
sales_avg

## [1] 5.2

quantile(sales, probs = c(0.025, 0.975))

## 2.5% 97.5%
## 1.8 10.9

10.4 Wholesale offer
Wholesale offer to buy your entire production for the next year for $6 mio.

Take the deal?

Many, many aspects:

• Willing to take a risk?
• Future plans

Initially: How likely is it that we can sell the production for more ourselves?
prob <- mean(sales > 6)
prob
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## [1] 0.33

Does not answer the question on its own, but it helps (e.g. in assessing the risk).
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