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1 Statistical inference: Hypothesis and test
1.1 Concept of hypothesis

• A hypothesis is a statement about a given population. Usually it is stated as a population parameter
having a given value or being in a certain interval.

• Examples:
– Quality control of products: The hypothesis is that the products e.g. have a certain weight, a

given power consumption or a minimal durability.
– Scientific hypothesis: There is no dependence between a company’s age and level of return.

1.2 Significance test
• A significance test is used to investigate, whether data is contradicting the hypothesis or not.
• If the hypothesis says that a parameter has a certain value, then the test should tell whether the sample

estimate is “far” away from this value.
• For example:

– Waiting times in a queue. We sample n customers and count how many that have been waiting
more than 5 minutes. The company policy is that at most 10% of the customers should wait more
than 5 minutes. In a sample of size n = 32 we observe 4 with waiting time above 5 minutes, i.e. the
estimated proportion is π̂ = 4

32 = 12.5%. Is this “much more” than (i.e. significantly different
from) 10%?

– The blood alcohol level of a student is measured 4 times with the values 0.504, 0.500, 0.512, 0.524,
i.e. the estimated mean value is ȳ = 0.51. Is this “much different” than a limit of 0.5?

1.3 Null and alternative hypothesis
• The null hypothesis - denoted H0 - usually specifies that a population parameter has some given

value. E.g. if µ is the mean blood alcohol level we can state the null hypothesis
– H0 : µ = 0.5.

• The alternative hypothesis - denoted Ha - usually specifies that the population parameter is contained
in a given set of values different than the null hypothesis. E.g. if µ again is the population mean of a
blood alcohol level measurement, then

– the null hypothesis is H0 : µ = 0.5
– the alternative hypothesis is Ha : µ ̸= 0.5.

1.4 Test statistic
• We consider a population parameter µ and write the null hypothesis

H0 : µ = µ0,

where µ0 is a known number, e.g. µ0 = 0.5.
• Based on a sample we have an estimate µ̂.
• A test statistic T will typically depend on µ̂ and µ0 (we may write this as T (µ̂, µ0)) and measures

“how far from µ0 is µ̂?”
• Often we use T (µ̂, µ0) = “the number of standard deviations from µ̂ to µ0”.
• For example it would be very unlikely to be more than 3 standard deviations from µ0, i.e. in that case

µ0 is probably not the correct value of the population parameter.

1.5 P -value
• We consider

– H0: a null hypothesis.
– Ha: an alternative hypothesis.
– T : a test statistic, where the value calculated based on the current sample is denoted tobs.
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• To investigate the plausibility of H0, we measure the evidence against H0 by the so-called p-value:
– The p-value is the probability of observing a more extreme value of T (if we were to repeat the

experiment) than tobs under the assumption that H0 is true.
– “Extremity” is measured relative to the alternative hypothesis; a value is considered extreme if it

is “far from” H0 and “closer to” Ha.
– If the p-value is small then there is a small probability of observing tobs if H0 is true, and thus H0

is not very probable for our sample and we put more support in Ha, so:

The smaller the p-value, the less we trust H0.

• What is a small p-value? If it is below 5% we say it is significant at the 5% level.

1.6 Significance level
• We consider

– H0: a null hypothesis.
– Ha: an alternative hypothesis.
– T : a test statistic, where the value calculated based on the current sample is denoted tobs and the

corresponding p-value is pobs.
• Small values of pobs are critical for H0.
• In practice it can be necessary to decide whether or not we are going to reject H0.
• The decision can be made if we previously have decided on a so-called α-level, where

– α is a given percentage
– we reject H0, if pobs is less than or equal to α
– α is called the significance level of the test
– typical choices of α are 5% or 1%.

1.7 Significance test for mean
1.7.1 Two-sided t-test for mean:

• We assume that data is a sample from norm(µ, σ).
• The estimates of the population parameters are µ̂ = ȳ and σ̂ = s based on n observations.
• Null hypothesis: H0 : µ = µ0, where µ0 is a known value.
• Two-sided alternative hypothesis: Ha : µ ̸= µ0.
• Observed test statistic: tobs = ȳ−µ0

se , where se = s√
n

.
• I.e. tobs measures, how many standard deviations (with ± sign) the empirical mean lies away from µ0.
• If H0 is true, then tobs is an observation from the t-distribution with df = n − 1.
• P -value: Values bigger than |tobs| or less than −|tobs| puts more support in Ha than H0.
• The p-value = 2 x “upper tail probability of |tobs|”. The probability is calculated in the t-distribution

with df degrees of freedom.

1.7.2 Example: Two-sided t-test

• Blood alcohol level measurements: 0.504, 0.500, 0.512, 0.524.
• These are assumed to be a sample from a normal distribution.
• We calculate

– ȳ = 0.51 and s = 0.0106
– se = s√

n
= 0.0106√

4 = 0.0053.
– H0 : µ = 0.5, i.e. µ0 = 0.5.
– tobs = ȳ−µ0

se = 0.51−0.5
0.0053 = 1.89.

• So we are almost 2 standard deviations from 0.5. Is this extreme in a t-distribution with 3 degrees of
freedom?
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library(mosaic)
1 - pdist("t", q = 1.89, df = 3)

0.0

0.1

0.2

0.3

−10 −5 0 5 10

de
ns

ity

probability

A:0.922

B:0.078

## [1] 0.07757725

• The p-value is 2· 0.078, i.e. more than 15%. On the basis of this we do not reject H0.

1.8 One-sided t-test for mean
The book also discusses one-sided t-tests for the mean, but we will not use those in the course.
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1.9 Agresti: Overview of t-test

1.10 Significance test for proportion
• Consider a sample of size n, where we observe whether a given property is present or not.
• The relative frequency of the property in the population is π, which is estimated by π̂.
• Null hypothesis: H0 : π = π0, where π0 is a known number.
• Two-sided alternative hypothesis: Ha : π ̸= π0.
• If H0 is true the standard error for π̂ is given by se0 =

√
π0(1−π0)

n .
• Observed test statistic: zobs = π̂−π0

se0
• I.e. zobs measures, how many standard deviations (with ± sign) there is from π̂ to π0.

1.10.1 Approximate test

• If both nπ̂ and n(1 − π̂) are larger than 15 we know from previously that π̂ follows a normal distribution
(approximately), i.e.

– If H0 is true, then zobs is an observation from the standard normal distribution.
• P -value for two-sided test: Values greater than |zobs| or less than −|zobs| point more towards Ha than

H0.
• The p-value=2 x “upper tail probability for |zobs|”. The probability is calculated in the standard normal

distribution.
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1.10.2 Example: Approximate test

• We consider a study from Florida Poll 2006:
– In connection with problems financing public service a random sample of 1200 individuals were

asked whether they preferred less service or tax increases.
– 52% preferred tax increases. Is this enough to say that the proportion is significantly different

from fifty-fifty?
• Sample with n = 1200 observations and estimated proportion π̂ = 0.52.
• Null hypothesis H0 : π = 0.5.
• Alternative hypothesis Ha : π ̸= 0.5.
• Standard error se0 =

√
π0(1−π0)

n =
√

0.5×0.5
1200 = 0.0144

• Observed test statistic zobs = π̂−π0
se0

= 0.52−0.5
0.0144 = 1.39

• “upper tail probability for 1.39” in the standard normal distribution is 0.0823, i.e. we have a p-value of
2· 0.0823≈ 16%.

• Conclusion: There is not sufficient evidence to reject H0, i.e. we do not reject that the preference in the
population is fifty-fifty.

• Note, the above calculations can also be performed automatically in R by (a little different results due
to rounding errors in the manual calculation):

count <- 1200 * 0.52 # number of individuals preferring tax increase
prop.test(x = count, n = 1200, correct = F)

##
## 1-sample proportions test without continuity correction
##
## data: count out of 1200
## X-squared = 1.92, df = 1, p-value = 0.1659
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.4917142 0.5481581
## sample estimates:
## p
## 0.52

1.10.3 Binomial (exact) test

• Consider again a sample of size n, where we observe whether a given property is present or not.
• The relative frequency of the property in the population is π, which is estimated by π̂.
• Let y+ = nπ̂ be the frequency (total count) of the property in the sample.
• It can be shown that y+ follows the binomial distribution with size parameter n and success

probability π. We use Bin(n, π) to denote this distribution.
• Null hypothesis: H0 : π = π0, where π0 is a known number.
• Alternative hypothesis: Ha : π ̸= π0, where π0 is a known number.
• P -value for two-sided binomial test:

– If y+ ≥ nπ0: 2 x “upper tail probability for y+” in the Bin(n, π0) distribution.
– If y+ < nπ0: 2 x “lower tail probability for y+” in the Bin(n, π0) distribution.

1.10.4 Example: Binomial test

• Experiment with n = 30, where we have y+ = 14 successes.
• We want to test H0 : π = 0.3 vs. Ha : π ̸= 0.3.
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• Since y+ > nπ0 = 9 we use the upper tail probability corresponding to the sum of the height of the
red lines to the right of 14 in the graph below. (Notice, the graph continues on the right hand side to
n = 30, but it has been cut off for illustrative purposes.)

• The upper tail probability from 14 and up (i.e. greater than 13) is:
lower_tail <- pdist("binom", q = 13, size = 30, prob = 0.3)
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A:0.960

B:0.040

1 - lower_tail

## [1] 0.04005255

• The two-sided p-value is then 2 x 0.04 = 0.08.

1.10.5 Binomial test in R

• We return to the Chile data, where we again look at the variable sex.
• Let us test whether the proportion of females is different from 50 %, i.e., we look at H0 : π = 0.5 and

Ha : π ̸= 0.5, where π is the unknown population proportion of females.
Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
binom.test( ~ sex, data = Chile, p = 0.5, conf.level = 0.95)

##
##
##
## data: Chile$sex [with success = F]
## number of successes = 1379, number of trials = 2700, p-value = 0.2727
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
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## 0.4916971 0.5297610
## sample estimates:
## probability of success
## 0.5107407

• The p-value for the binomial exact test is 27%, so there is no significant difference between the proportion
of males and females.

• The approximate test has a p-value of 26%, which can be calculated by the command
prop.test( ~ sex, data = Chile, p = 0.5, conf.level = 0.95, correct = FALSE)

(note the additional argument correct = FALSE).

1.11 Agresti: Overview of tests for mean and proportion

2 Comparison of two populations
2.1 Two populations

• Consider two populations:

– Population 1 has mean µ1 and standard deviation σ1.

– Population 2 has mean µ2 and standard deviation σ2.

• We want to compare the means by looking at the difference µ1 − µ2.
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Population 1 Population 2

µ1 σ1 µ2 σ2

2.2 Two samples
• We now take a sample from each population.

– The sample from Population 1 has sample mean x̄1, sample standard deviation s1 and sample size
n1.

– The sample from Population 2 has sample mean x̄2, sample standard deviation s2 and sample size
n2.

Population 1 Population 2

µ1 σ1 µ2 σ2

Sample 1 Sample 2
x1 s1 x2 s2

2.3 Dependent and independent samples
• We distinguish between two types of samples:

– The two samples are independent.
– The two samples are paired.

• Example: Suppose we consider the fuel consumption of cars.

– If we compare two samples of cars with different engine types, then the two samples are independent,
since each car can only have one of the two engine types.

– If we compare the fuel consumption of cars at two different speed levels by testing each car at
both speed levels, then then samples are paired.

2.4 Comparison of two means (Independent samples)
• We consider the situation, where we have two independent samples of a quantitative variable.

• We estimate the difference µ1 − µ2 by
d = x̄1 − x̄2.

• Assume that we can find the estimated standard error sed of the difference.
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• If the samples come from two normal distributions, or if both samples are large (n1, n2 ≥ 30), then one
can show

Tobs = (X̄1 − X̄2) − (µ1 − µ2)
sed

∼ t(df),

where t(df) is a t-distribution with df degrees of freedom.

• By the usual procedure, we can use this to construct a confidence interval for the unknown population
difference of means µ1 − µ2 by

(x̄1 − x̄2) ± tcritsed,

where the critical t-score, tcrit, is determined by the confidence level and the df .

2.5 Significance test (Independent samples)
• We may be interested the testing the null-hypothesis that the population means are the same, which

we can formulated as:

– H0 : µ1 − µ2 = 0.

– Ha : µ1 − µ2 ̸= 0.

• If the null hypothesis is true, then the test statistic:

Tobs = (X̄1 − X̄2) − 0
sed

,

has a t-distribution with df degrees of freedom.

• The p-value is the probability of observing something further away from 0 than tobs in a t(df)
distribution.

• It remains to find the estimated standard error sed and the degrees of freedom df . We distinguish
between two cases:

– The two populations have equal variances σ2
1 = σ2

2 .
– The two populations have different variances σ2

1 ̸= σ2
2 .

2.6 Standard error (Independent samples, equal variances)
• The standard error of d = x̄1 − x̄2 is given by the formula:

√
σ2

1
n1

+ σ2
2

n2
.

• If the variances are equal, σ2
1 = σ2

2 , then we estimate the common value by the pooled variance
estimate

s2
p = (n1−1)s2

1+(n2−1)s2
2

n1+n2−2 .

• Inserting this estimate in the formula for the standard error we obtain the estimated standard error

sed =
√

s2
p

n1
+ s2

p

n2
= sp

√
1

n1
+ 1

n2
.

• In this situation, the degrees of freedom are df = n1 + n2 − 2.
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2.7 Example: Comparing two means (independent samples, equal variances)
We return to the mtcars data. We study the association between the variables vs and mpg (engine type
and fuel consumption). So, we will perform a significance test to test the null-hypothesis that there is no
difference between the mean of fuel consumption for the two engine types.

• We will test the null-hypothesis assuming equal variances:
library(mosaic)
fv <- favstats(mpg ~ vs, data = mtcars)
fv

## vs min Q1 median Q3 max mean sd n missing
## 1 0 10.4 14.8 15.7 19.1 26.0 16.6 3.86 18 0
## 2 1 17.8 21.4 22.8 29.6 33.9 24.6 5.38 14 0

• Difference: d = 16.6167 − (24.5571) = −7.9405.

• Sample sizes: n1 = 18 and n2 = 14.

• Estimated standard deviations: s1 = 3.8607 (not v-shaped) and s2 = 5.379 (v-shaped).

• Pooled variance:

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2 = 17 · 3.86072 + 13 · 5.3792

18 + 14 − 2 = 20.984.

• Estimated standard error of difference: sed = sp

√
1

n1
+ 1

n2
=

√
20.984

√
1

18 + 1
14 = 1.6324.

• Observed t-score for H0 : µ1 − µ2 = 0 is: tobs = d−0
sed

= −7.9405
1.6324 = −4.864.

• The degrees of freedom are df = n1 + n2 − 2 = 30.

• We find the p-value:
2*pdist("t", q = -4.864, df=30, xlim = c(-5, 5))
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## [1] 3.419648e-05

2.8 Standard error (Independent samples, unequal variances)
• If the variances are unequal, then we simply insert the two estimates s2

1 and s2
2 for σ2

1 and σ2
2 in the

formula for the standard error to obtain the estimated standard error

sed =

√
s2

1
n1

+ s2
2

n2
.

• The degrees of freedom df for sed can be estimated by a complicated formula, which we will not present
here (see p.365 in the book).

• Note:

– If both n1 and n2 are above 30, then we may use the standard normal distribution to compute a
z-score rather than the t-distribution to compute the t-score. This way we avoid computing df .

– If n1 or n2 are below 30, then we let R calculate the degrees of freedom and the p-value/confidence
interval.

2.9 Example: Comparing two means (independent samples, unequal variances)
We return to the mtcars data. We study the association between the variables vs and mpg (engine type
and fuel consumption). So, we will perform a significance test to test the null-hypothesis that there is no
difference between the mean of fuel consumption for the two engine types.

• We now make the analysis without assuming equal variances:
library(mosaic)
fv <- favstats(mpg ~ vs, data = mtcars)
fv
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## vs min Q1 median Q3 max mean sd n missing
## 1 0 10.4 14.8 15.7 19.1 26.0 16.6 3.86 18 0
## 2 1 17.8 21.4 22.8 29.6 33.9 24.6 5.38 14 0

• Difference: d = 16.6167 − (24.5571) = −7.9405.

• Sample sizes: n1 = 18 and n2 = 14.

• Estimated standard deviations: s1 = 3.8607 (not v-shaped) and s2 = 5.379 (v-shaped).

• Estimated standard error of difference: sed =
√

s2
1

n1
+ s2

2
n2

=
√

3.86072

18 + 5.3792

14 = 1.7014.

• Observed t-score for H0 : µ1 − µ2 = 0 is: tobs = d−0
sed

= −7.9405
1.7014 = −4.6671.

• The degrees of freedom can be found using R (see below) to be df = 22.716.

• We find the p-value:
2* pdist("t", q = -4.6671, df=22.716, xlim = c(-5, 5))
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## [1] 0.0001098212

• We reject the null-hypothesis and conclude that the fuel consumption is different for the two engine
types.

2.10 Example: Comparing two means (independent samples)
• Now we know there is a difference between the two population means. We can also make a 95%

confidence interval for how large the difference µ1 − µ2 actually is by the formula

d ± tcritsed
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qdist("t", p = 1-0.05/2, df=22.716, xlim = c(-3, 3))
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B:0.025

## [1] 2.07009

• Inserting the values from the previous slide yields

[−7.94 − 2.07 ∗ 1.70; −7.94 + 2.07 ∗ 1.70] = [−11.5, −4.4].

• We are 95% confident that the difference in fuel consumption is between the two engine types is between
-4.4mpg and -11.5mpg.

2.11 T-test in R (Independent samples)
• We can leave all the calculations to R by using t.test:

t.test(mpg ~ vs, data = mtcars,var.equal = FALSE)

##
## Welch Two Sample t-test
##
## data: mpg by vs
## t = -4.6671, df = 22.716, p-value = 0.0001098
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -11.462508 -4.418445
## sample estimates:
## mean in group 0 mean in group 1
## 16.61667 24.55714
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• We recognize the t-score −4.6671, the p-value 0.0001, and the confidence interval [−11.5; −4.4]. The
estimated degrees of freedom can be found in the output to be df = 22.716.

2.12 Test for equal variances (Independent samples)
• In order to decide whether to use the t-test with equal or unequal variance, we may test the hypothesis

H0 : σ2
1 = σ2

2 .

• As test statistic we use
Fobs = s2

1
s2

2
.

• If the null-hypothesis is true, we expect Fobs to take values close to 1. Small and large values are critical
for H0.

• Under H0, Fobs follows a so-called F -distribution with df1 = n1 − 1 and df2 = n2 − 1 degrees of freedom.

– If Fobs < 1 we reject the null-hypothesis if two times the probability of getting something smaller
than Fobs is less than the significance level.

– If Fobs > 1 we reject the null-hypothesis if two times the probability of getting something larger
than Fobs is less than the significance level.

2.12.1 Example: Test for equal variances (Independent samples)

• To test whether the variance is the same for the two engine types in the mtcars example, we first
compute the sample variances.

var(mpg~vs,data=mtcars)

## 0 1
## 14.90500 28.93341

• We compute Fobs = s2
1

s2
2

= 14.9
28.9 = 0.516.

• The probability of observing something smaller than Fobs in an F -distribution with df1 = n1 − 1 = 17
and df2 = n2 − 1 = 13:

pdist("f", 0.516, df1=17, df2=13)
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## [1] 0.1004094

• The p-value is 2 ∗ 0.1004 = 0.2008. Here we multiply by two because the test is two-sided (large values
would also have been critical).

• We find no evidence against the null-hypothesis.

2.13 Comparison of two means: paired t-test (dependent samples)
• We now consider the case where we have two samples from two different populations but the observations

in the two samples are paired.

– For each pair, we can compute the difference between the two observations.
– We now have one sample of observed differences.
– We apply the the one-sample t-test from Lecture 2.1 to test whether the mean difference is zero.

• Example: Suppose we make the following experiment:

– Choose 32 students at random and measure their average reaction time in a driving simulator
while they are listening to radio or audio books.

– Later the same 32 students redo the simulated driving while talking on a cell phone.
– We are interested in whether or not the fact that you are actively participating in a conversation

changes your average reaction time compared to when you are passively listening.

• So we have 2 samples corresponding to with/without phone. In this case we have paired samples, since
we have 2 measurement for each student.

• We use the following strategy for analysis:

– For each student calculate the change in average reaction time with and without talking on the
phone.

– The changes d1, d2, . . . , d32 are now considered as ONE sample from a population with mean µ.
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– Test the hypothesis H0 : µ = 0 as usual (using a one-sample t-test).

2.13.1 Reaction time: data example

• Data is organized in a data frame with 3 variables:
– student (integer – a simple id)
– reaction_time (numeric – average reaction time in milliseconds)
– phone (factor – yes/no indicating whether speaking on the phone)

reaction <- read.delim("https://asta.math.aau.dk/datasets?file=reaction.txt")
head(reaction, n = 3)

## student reaction_time phone
## 1 1 604 no
## 2 2 556 no
## 3 3 540 no

• We first manually find the reaction time difference for each student and do a one sample t-test on this
difference:

yes <- subset(reaction, phone == "yes")
no <- subset(reaction, phone == "no")
all(yes$student == no$student)

## [1] TRUE
reaction_paired <- data.frame(student = no$student, yes = yes$reaction_time, no = no$reaction_time)
reaction_paired$diff <- reaction_paired$yes - reaction_paired$no
head(reaction_paired)

## student yes no diff
## 1 1 636 604 32
## 2 2 623 556 67
## 3 3 615 540 75
## 4 4 672 522 150
## 5 5 601 459 142
## 6 6 600 544 56
t.test( ~ diff, data = reaction_paired)

##
## One Sample t-test
##
## data: diff
## t = 5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 31.70186 69.54814
## sample estimates:
## mean of x
## 50.625

• With a p-value of 0.0000058 we reject the null-hypothesis that speaking on the phone has no influence
on the reaction time.

• We can avoid the manual calculations and let R perform the significance test by using t.test with
paired = TRUE:
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t.test(reaction_paired$no, reaction_paired$yes, paired = TRUE)

##
## Paired t-test
##
## data: reaction_paired$no and reaction_paired$yes
## t = -5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -69.54814 -31.70186
## sample estimates:
## mean difference
## -50.625

2.14 Response variable and explanatory variable
• The situation with two populations is an example where we have: * A response variable (or outcome,

dependent variable).

– An explanatory variable (or independent variable, covariate) that divides data in 2 groups.

• We are interested in the effect of the explanatory variable on the response variable.

– For instance in the mtcars data, mpg is the response variable and vs is the explanatory variable.

• In this lecture we consider the case with one discrete explanatory variable. Module 3 is concerned with
the case of one or more continuous variables.

3 More than two groups (Analysis of variance)
3.1 More than two populations

• We are now going to consider a situation where we have k populations with mean values µ1, . . . , µk.

• We assume that each population follows a normal distribution and that the standard deviation is the
same in all populations.

• We are interested in the null-hypothesis that all k populations have the same mean, i.e.

H0 : µ1 = · · · = µk.

Ha : not all µ1, . . . µk are the same.

• We take out a sample from each population.

Population 1 Population 2 Population k

µ1 σ µ2 σ

...

µk σ

18



3.1.1 Data example

• The data set chickwts is available in R, and on the course webpage.
• 71 newly hatched chickens were randomly allocated into six groups, and each group was given a different

feed supplement.
• Their weights in grams after six weeks are given along with feed types, i.e. we have a sample with

corresponding measurements of 2 variables:
– weight: a numeric variable giving the chicken weight.
– feed: a factor giving the feed type.

• Always start with some graphics:
library(mosaic)
gf_boxplot(weight ~ feed, data = chickwts)
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3.2 Estimation of mean values
• We estimate the mean in each group by the sample mean inside that group, i.e. µ̂i = x̄i, i = 1, . . . , k.

• We use mean to find the mean, for each group:
mean(weight ~ feed, data = chickwts)

## casein horsebean linseed meatmeal soybean sunflower
## 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167

• We can e.g. see that the sample mean is 323.6, when feed=casein but 160.2, when feed=horsebean.
• Is this a significant difference ?
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3.3 Contrasts
• If we want compare groups, it is convenient to formulate the model using contrasts.
• One group is chosen as the reference group, which all other groups are compared to.

– Sometimes there is a group corresponding to “no treatment” and we are interested in the effect of
different treatments. Other times the reference group can be arbitrary.

• If group 1 is the reference group, the mean values in the remaining groups groups can be expressed as

µi = µ1 + αi,

where αi = (µi − µ1) is the difference between group i and the reference group. The αi are called
contrasts.

3.3.1 Example: contrast estimates

model <- lm(weight ~ feed, data = chickwts)
summary(model)

##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -123.909 -34.413 1.571 38.170 103.091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 323.583 15.834 20.436 < 2e-16 ***
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
## feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
## feedmeatmeal -46.674 22.896 -2.039 0.045567 *
## feedsoybean -77.155 21.578 -3.576 0.000665 ***
## feedsunflower 5.333 22.393 0.238 0.812495
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

• In the example the groups are different feeds. R chooses the lexicographically smallest, which is
casein, to be the reference group.

• We get information about contrasts and their significance:
• Intercept is the estimated mean µ̂casein = 323.583 in the reference group.

– In the same line, there is also a test of the null-hypothesis H0 : µ1 = 0 that the weight after 6
weeks is 0 (p < 2 × 10−16) (of course, chickens grow a lot over 6 weeks).

• The line feedhorsebean estimates the contrast αhorsebean between the casein and horsebean group
to be α̂horsebean = −163.383.

– The null-hypothesis that there is no difference between casein and horsebean (H0 : αhorsebean = 0)
is rejected with p=2 × 10−9.
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3.4 Overall test for effect
• We are now interested in testing the null-hypothesis

H0 : µ1 = µ2 = · · · = µk against Ha : Not all of the population means are the same

• Alternatively

H0 : α2 = α3 = · · · = αk = 0, Ha : At least one contrast is non-zero.

• Idea: Compare variation within groups and variation between groups.
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3.5 Test statistic
• We use the test statistic

Fobs = (TSS − SSE)/(k − 1)
SSE/(n − k) .

• If observations from group i are called xij , j = 1, . . . , k, we have:

– TSS =
∑

i

∑
j(xij − x̄)2, where x̄ is the average of all observations from all groups.
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– SSE =
∑

i

∑
j(xij − x̄i)2.

• Interpretation:

– TSS: error sum of squares if common mean.
– SSE: error sum of squares if different means.
– TSS-SSE: how much does error sum of squares increase if means are restricted to be equal.

• One can show that TSS-SSE measures the variation of group means around common mean.

• Thus,
Fobs = variation between groups

variation within groups .

## Warning in geom_point(aes(x = red_dot), color = "red"): All aesthetics have length 1, but the data has 71 rows.
## i Please consider using `annotate()` or provide this layer with data containing a single row.
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3.6 The F -test
• A large variation between groups compared to the variation within groups points against H0.

• Thus, large values are critical for the null-hypothesis.

• Under the null-hypothesis, Fobs follows an F -distribution with df1 = k − 1 and df2 = n − k degrees of
freedom.

• A p-value for the null-hypothesis is the probability of observing something larger than Fobs in an
F -distribution with df1 and df2 degrees of freedom.

• For instance if Fobs = 15.36 with df1 = 5 and df2 = 65 degrees of freedom:
1 - pdist("f", 15.36, df1=5, df2=65)
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3.7 Example

model <- lm(weight ~ feed, data = chickwts)
summary(model)

##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -123.909 -34.413 1.571 38.170 103.091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 323.583 15.834 20.436 < 2e-16 ***
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
## feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
## feedmeatmeal -46.674 22.896 -2.039 0.045567 *
## feedsoybean -77.155 21.578 -3.576 0.000665 ***
## feedsunflower 5.333 22.393 0.238 0.812495
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
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## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

• The last line gives us the value of Fobs = 15.36 and the corresponding p-value (5.9 × 10−10). Clearly
there is a significant difference between the types of feed.
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