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1 Models with exogenous variables

1.1 Exogenous variables
• The ARMA processes are flexible models for a time series Yt, t = 1, . . . , n evolving randomly over time,

but they do not include the possibility that anything is influencing Yt.
• An exogeneous variable is another variable, say Xt, that influences the behaviour of Yt

– Wind power production Yt is influenced by the wind speed Xt

– The velocity of a DC motor Yt is influenced by the input voltage Xt

• Here Xt may be another stochastic process, which we do not model, but only consider as given, or it
might be something we can control.

1.2 Data example
• The dataset below contains data from Jan 7 to Jul 13 2022 on two variables

– forecast: Total day ahead forecasted wind and solar energy production
– price: Day ahead elspot prices with weekly variation removed
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elspot<-read.csv("https://asta.math.aau.dk/eng/static/datasets?file=elspot.csv", header = TRUE)
forecast<-elspot[,2]
price<-elspot[,3]
ts.plot(ts(forecast),ts(-price),col=1:2)
legend("topright",legend=c("forecast","- price"),col=1:2,lty=1)
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1.3 Regression models with exogenous variables
• We can combine regression models with ARMA models to obtain a stochastic process which is influenced

by exogenous variables.
• Consider a linear regression of Yt on Xt, but where the noise term is an ARMA process:

Yt = γ0 + γ1Xt + ϵt, α(B)ϵt = β(B)Wt

• If we isolate ϵt = Yt − γ0 − γ1Xt and insert into the ARMA expression, we get something that looks
more like an ARMA process, but with Yt adjusted by the exogenous variable:

α(B)(Yt − γ0 − γ1Xt) = β(B)Wt

• The purpose of fitting such a model is both to obtain a good model for the evolution of the data and to
obtain an understanding of the relation between Yt and Xt.

• Above, Xt is a single stochastic process, but we can also include multiple stochastic processes by making
a multiple regression model with an ARMA model for the errors.

1.4 Example
• As an example consider a simple linear regression combined with an AR(1) process for noise terms:

Yt = γ0 + γ1Xt + ϵt, ϵt = α1ϵt−1 + Wt

or, since ϵt−1 = Yt−1 − γ0 − γ1Xt−1,

Yt = α1Yt−1 + (1 − α1)γ0 + γ1(Xt − α1Xt−1) + Wt

• Notice that the model behaves like an AR(1) process, but instead of having a constant mean of 0, its
mean is constantly adjusted by the exogenous variable.

1.5 Simulation of the example
• We simulate some data resembling the example, where we let Xt follow a sine curve:

alpha = 0.9; gamma = 1; n = 100
x = as.ts(5*sin(1:n/5))
eps = arima.sim(model=list(ar=alpha),n=n)
y = gamma*x+eps
ts.plot(x,y,col=1:2)
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• We should think of the red curve as some data we want to model, and the black curve as another
variable which we believe may influence the data.

• We can also plot Xt against Yt to get a view of the relation between the two variables.
plot(as.numeric(x),as.numeric(y))
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1.6 Estimation and model checking
• We can estimate the parameters using the arima function in R.
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• We fit a linear regression model with AR(1) noise to the simulated data (i.e. the true model used for
simulation):

mod=arima(y,order=c(1,0,0),xreg=x); mod

##
## Call:
## arima(x = y, order = c(1, 0, 0), xreg = x)
##
## Coefficients:
## ar1 intercept x
## 0.8069 0.0679 1.0551
## s.e. 0.0569 0.4795 0.1018
##
## sigma^2 estimated as 0.923: log likelihood = -138.41, aic = 284.82

• The fitted model becomes

Yt = 0.0679 + 1.0551 · Xt + ϵt, ϵt = 0.8069 · ϵt−1 + Wt

• The errors ϵ̂t = yt − 0.0679 + 1.0551 · xt should behave like an AR(1)-model with α̂ = 0.8069.
– So the residuals ϵt − 0.8069 · ϵt−1 should look like white noise.

plot(resid(mod))
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1.7 Fitting AR(1) model to data example
• Recall the elspot price dataset

forecast<- ts(forecast)
price<-ts(price)
model=arima(price,order=c(1,0,0),xreg=forecast); model

##
## Call:
## arima(x = price, order = c(1, 0, 0), xreg = forecast)
##
## Coefficients:
## ar1 intercept forecast
## 0.3886 1715.8412 -0.3053
## s.e. 0.0680 73.2894 0.0271
##
## sigma^2 estimated as 117486: log likelihood = -1364.2, aic = 2736.41

• So we get the model

pricet = 1715.8412 − 0.3053 · forecastt + ϵt, ϵt = 0.3886 · ϵt−1 + Wt.
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plot(resid(model))
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• Residuals indicate that there could be some weekly variation not accounted for.
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1.8 Prediction
• Prediction can only be performed if we know the behavior of Xt for future time points, for example if

we are able to control it.
• For the previous example we assume that the sine curve continues:

nnew = 20
xnew = lag(as.ts(5*sin(((n+1):(n+nnew))/5)),-n)
ts.plot(x,y,xnew,col=c(1,2,1),lty=c(1,1,2))
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• We use the predict function.
p = predict(mod,n.ahead=nnew,newxreg=xnew)
ts.plot(x,y,xnew,p$pred,p$pred+2*p$se,p$pred-2*p$se,col=c(1,2,1,2,2,2),lty=c(1,1,2,2,3,3))
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1.9 An example with delay
• If we model the influence of Xt on Yt, it may take some time before Yt responds to a change in Xt.

– Say the delay is k time steps.

• We want to model the effect of Xt−k on Yt.
– We may not know the delay k, so we may need to estimate it first.

• We simulate a dataset with a built-in delay, and then we model this afterwards.
alpha = 0.5; gamma = 1; n = 100; delay = 5
x = as.ts(5*sin(1:(n+delay)/5))
eps = arima.sim(model=list(ar=alpha),n=n+delay)
y = gamma*lag(x,-delay)+eps
dat_lag = ts.intersect(x,y)
ts.plot(dat_lag[,1],dat_lag[,2],col=1:2)
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1.10 The cross-correlation function
• The cross correlation function is used for checking the relation between two time series at different

time points:
ρxy(t + k, t) = Cor(Xt+k, Yt).

• Values that are close to 1 or -1 indicate that the two time series are closely related if Xt is delayed by k
time steps.

• Cross-correlation function for the simulated data
cc = ccf(dat_lag[,1],dat_lag[,2],lag.max=10)
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• Cross-correlation function for the elspot data:
ccf(forecast,price)
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1.11 Fitting models with lag
• We estimate the lag to be the one where the cross-correlation function is maximal:

estlag = cc$lag[which(cc$acf==max(abs(cc$acf)))]
estlag

## [1] -5

• Plotting the data with this lags can be useful to check the choice:
dat_shifted = ts.intersect(lag(as.ts(dat_lag[,1]),estlag),dat_lag[,2] )
ts.plot(dat_shifted[,1],dat_shifted[,2],col=1:2)
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• We can now fit a model with this lag:
mod=arima(dat_shifted[,2],order=c(1,0,0),xreg=dat_shifted[,1]); mod

##
## Call:
## arima(x = dat_shifted[, 2], order = c(1, 0, 0), xreg = dat_shifted[, 1])
##
## Coefficients:
## ar1 intercept dat_shifted[, 1]
## 0.5938 -0.2047 1.0526
## s.e. 0.0820 0.2347 0.0615
##
## sigma^2 estimated as 0.8884: log likelihood = -129.39, aic = 266.79

1.12 ARMAX models
• An alternative way of including exogenous variables into an ARMA model is an ARMAX model.
• The ARMAX(p, q, b) model is an ARMA(p, q) model including b terms of an exogenous variable, i.e. it
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is defined by

Yt =
p∑

i=1
αiYt−i +

b∑
i=1

γiXt−i + Wt +
q∑

i=1
βiWt−i

• Using the backshift operator, this can be written as

α(B)Yt = γ(B)Xt + β(B)Wt

with α(B) = 1 −
∑p

i=1 αiB
i, β(B) = 1 +

∑q
i=1 βiB

i, and γ(B) =
∑b

i=1 γiB
i.

• Compare with the regression with ARMA noise:

α(B)(Yt − γ0 − γ1Xt) = β(B)Wt ⇒ α(B)Yt = α(B)(γ0 + γ1γXt) + β(B)Wt

• The difference is only how the model includes the exogenous variable.
• It is mostly a matter of taste which kind of model you should choose.
• Only the regression with ARMA noise is included into R as standard.

2 Continuous time processes

2.1 Discrete vs. continuous time
There are two fundamentally different model classes for time series data.

• Discrete time stochastic processes
– Variables given at equally spaced time points

• Continuous time stochastic processes
– Variables that evolve over a continuous time scale

So far we have only looked at the discrete time case. We will finish todays lecture by looking a bit at the
continuous time case, just to give you an idea of this topic.

2.2 Continuous time stochastic processes
• In this setup we see the underlying Xt as a continuous function of t for t in some interval [0, T ].

• In principle we imagine that there are infinitely many data points, simply because there are infinitely
many time points between 0 and T .

• In practice we will always only have finitely many data points.

• But we can imagine that the real data actually contains all the data points. We are just not able to
measure them (and to store them in a computer).

• With a model for all datapoints, we are - through simulation - able to describe the behaviour of data.
Also between the observations.

2.3 The Wiener process
• A key example of a process in continuous time will be the so–called Wiener process or Brownian

motion.

• Here are three simulated realizations (black, blue and red) of this process: here
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• A Wiener process has the following properties:
– It starts in 0: B0 = 0.
– It has independent increments: For 0 < s < t it holds that Bt − Bs is independent of everything

that has happened up to time s, that is Bu for all u ≤ s.
– It has normally distributed increments: For 0 < s < t it holds that the increment Bt − Bs is

normally distributed with mean zero and variance t − s:

Bt − Bs ∼ norm(0, t − s).

• The intuition of this process is that it somehow changes direction all the time: How the process changes
after time s will be independent of what has happened before time s. So whether the process should
increase or decrease after s will not be affected by how much it was increasing or decreasing before.
This gives the very bumpy behaviour over time.

2.4 Stochastic differential equations
• A common way to define a continuous time stochastic process model is through a stochastic differential

equation (SDE) which we will turn to shortly, but before doing so we will recall some basic things about
ordinary differential equations.

• Example: Suppose f is an unknown differentiable function satisfying the differential equation

df(t)
dt

= −4f(t)

with initial condition f(0) = 1. This equation has the solution

f(t) = exp(−4t)
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• With a slightly unusual notation we can rewrite this as

df(t) = −4 · f(t)dt

• This equation has the following (hopefully intuitive) interpretation:

– When time increases by a small amount dt (from t to t+dt) the value of f changes (approximately)
by −4f(t) · dt.

• So when t is increased, then f is decreased, and the decrease is proportional to the value of f(t). That
is why f decreases slower and slower, when t is increased.

• We say that the function has a drift towards zero, and this drift is determined by the value of the
function.

2.5 Stochastic differential equations
• It will probably never be true that data behaves exactly like the exponentially decreasing curve on the

previous slide.

• Instead we will consider a model, where some random noise from a Wiener process has been added to
the growth rate. Two different (black/blue) simulated realizations can be seen below
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• The type of process that is simulated above is described formally by the equation

dXt = −4Xtdt + 0.1dBt

• This is called a Stochastic Differential Equation (SDE), and the processes simulated above are
called solutions of the stochastic differential equation.

• The SDE dXt = −4Xtdt + 0.1dBt has two terms:

– −4Xtdt is the drift term.
– 0.1dBt is the diffusion term.

• The intuition behind this notation is very similar to the intuition in the equation df(t) = −4 · f(t) dt
for an ordinary differential equation. When the time is increased by the small amount dt, then the
process Xt is increased by −4Xt dt AND by how much the process 0.1Bt has increased on the time
interval [t, t + dt].

• So this process has a drift towards zero, but it is also pushed in a random direction (either up or down)
by the Wiener process (more precisely, the process 0.1Bt)
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