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1 Introduction to stochastic processes

1.1 Data examples
• A special type of data arises when we measure the same variable at different points in time with equal

steps between time points.

• This data type is called a (discrete time) stochastic process or a time series

• One example is the time series of monthly electricity production (GWh) in Australia from Jan. 1958 to
Dec. 1990 :

CBEdata <- read.table("https://asta.math.aau.dk/eng/static/datasets?file=cbe.dat", header = TRUE)
CBE <- ts(CBEdata[,3])
plot(CBE, ylab="GWh",main="Electricity production")
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• Another example is monthly measurements of the atmospheric CO2 concentration measured at Mauna
Loa 1959 - 1997:

dat<-ts(co2)
plot(co2)
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• Other examples:
– Hourly wind speed measurements
– Daily elspot prices

2



– An electrical signal measured each millisecond
• Aim: Model, analyse and make predictions for such datasets.

1.2 Stochastic processes
• We denote by Xt the variable at time t. We denote the time points by t = 1, 2, 3, . . . , n.

– We will always assume the data is observed at equidistant points in time (i.e. time steps between
consecutive observations are the same).

• Measurements that are close in time will typically be similar: observations are not statistically
independent!

• Measurements that are far apart in time will typically be less correlated.

2 Important stochastic processes

2.1 Example 1: White noise
• A stochastic process is called a white noise process if the Xt are

– statistically independent
– identically distributed
– have mean 0 and variance σ2

• It is called Gaussian white noise, if

– Xt ∼ norm(0, σ2)
x = rnorm(1000,0,1)
ts.plot(x, main = "Simulated Gaussian white noise process")
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Simulated Gaussian white noise process
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• White noise processes are the simplest stochastic processes.

• Real data does typically not have complete independence between measurements at different time
points, so white noise is generally not a good model for real data, but it is a building block for more
complicated stochastic processes.

3 Example 2: Random walk
• A random walk is defined by Xt = Xt−1 + Wt, where Wt is white noise.

• Here are 5 simulations of a random walk:
x = matrix(0,1000,5)
for (i in 1:5) x[,i] = cumsum(rnorm(1000,0,1))
ts.plot(x,col=1:5)
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• The random walk may come back to zero after some time, but often it has a tendency to wander of in
some random direction.

4 Example 3: First order autoregressive process
• A first order autoregressive process, AR(1), is defined by Xt = αXt−1 + Wt, where Wt is white

noise and α ∈ R.
– Typically −1 ≤ α ≤ 1
– For α = 0 we get white noise
– For α = 1 we get a random walk

• Simulation of 3 AR(1)-processes with different α values:
w = ts(rnorm(1000))
x1 = filter(w,0.5,method="recursive")
x2 = filter(w,0.9,method="recursive")
x3 = filter(w,0.99,method="recursive")
ts.plot(x1,x2,x3,col=1:3)
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• Next time we will consider autoregressive processes in much more detail and higher order, where they
become quite flexible models for data.

5 Mean, autocovariance and stationarity

5.1 Mean function
• The mean function of a stochastic process is given by

µt = E(Xt)

• A process is called first order stationary if µt = µ.

• Examples:

– The white noise process: µt = 0 by definition.
– The random walk:

µt = E(Xt) = E(Xt−1 + Wt) = E(Xt−1) + E(Wt) = E(Xt−1) = µt−1

So the random walk is first order stationary.
– Similarly,

µt = E(Xt) = E(αXt−1 + Wt) = αE(Xt−1) + E(Wt) = αE(Xt−1) = αµt−1

The AR(1)-model is first order stationary if µ0 = 0 or α = 1, otherwise not.
– The electricity production in Australia did not look first order stationary.

plot(CBE,main="Electricity production")
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• The mean function shows the mean behavior of the process, but individual simulations may move far
away from this. For example, the random walk has a tendency to move far away from the mean. White
noise on the other hand will stay close to the mean.

5.2 Autocovariance/autocorrelation functions
• The autocovariance function is given by

γ(t, t + h) = Cov(Xt, Xt+h) = E((Xt − µt)(Xt+h − µt+h))

• h is called the lag.
• Note that

γ(t, t) = Var(Xt) = σ2
t

is the variance at time t.
• The autocorrelation function (ACF) is

ρ(t, t + h) = Cor(Xt, Xt+h) = Cov(Xt, Xt+h)
σtσt+h

• It holds that ρ(t, t) = 1, and ρ(t, t + h) is between -1 and 1 for any h.
• The autocorrelation function measures how correlated Xt and Xt+h are related:

– If Xt and Xt+h are independent, then ρ(t, t + h) = 0
– If ρ(t, t + h) is close to one, then Xt and Xt+h tends to be either high or low at the same time.
– If ρ(t, t + h) is close to minus one, then when Xt is high Xt+h tends to be low and vice versa.

5.3 Stationarity
• We call a stochastic process second order stationary if
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– the mean is constant, µt = µ
– the variance σ2

t = Var(Xt, Xt) is constant.
– the autocorralation function only depends on the lag h:

ρ(t, t + h) = ρ(h)

• If a process is second order stationary, then also the autocovariance is stationary γ(t, t + h) = γ(h),
i.e. it is a function of only the lag and is easier to work with and plot.

• Intuitively, stationarity means that the process behaves in the same way no matter which time we look
at.

• There are other kinds of stationarity, but in this course, stationarity will always mean second order
stationarity.

5.4 Stationarity and autocorrelation - example
• Consider an AR(1) process Xt = αXt−1 + Wt. We consider stationarity and autocorrelation for this

process.

– We have already seen that we need µt = 0 to have first order stationarity.

• Now consider the variance. Since Xt = αXt−1 + Wt,

σ2
t = Var(Xt) = Var(αXt−1 + Wt) = Var(αXt−1) + Var(Wt) = α2Var(Xt−1) + Var(Wt) = α2σ2

t−1 + σ2

– (Here we used that Var(X + Y ) = Var(X) + Var(Y ) when X and Y are independent).

• If the variance is constant, then σ2
t = σ2

t−1 and

σ2
t = α2σ2

t + σ2

– We see that the variance can only be constant if −1 < α < 1. In this case σ2
t = σ2

1−α2 .

– For |α| ≥ 1, the variance will increase over time. The process is cannot be stationary (including
random walk).

• To find the autocorrelation, first observe

Xt+h = αXt+h−1 + Wt+h = · · · = αhXt +
h−1∑
i=0

αiWt+h−i

• Then we find the autocovariance:

γ(t, t+h) = Cov(Xt, Xt+h) = Cov(Xt, αhXt+
h−1∑
i=0

αiWt+h−i) = Cov(Xt, αhXt)+Cov(Xt,

h−1∑
i=0

αiWt+h−i) = αhCov(Xt, Xt)+0 = αhVar(Xt)

– (Here we used the computation rules Cov(X, Y + Z) = Cov(X, Y ) + Cov(X, Z) and Cov(X, aY ) =
aCov(X, Y ).)

• If the variance is constant, we can calculate the autocorrelation:

Cov(Xt, Xt+h)
σtσt+h

= αhσ2/(1 − α2)
σ2/(1 − α2) = αh.

• So: the AR(1)-model is stationary if −1 < α < 1 and σ2
t = σ2/(1 − α2) - otherwise not.

• The autocorrelation decays exponentially for a stationary AR(1)-model. This is illustrated for 3 different
α values:
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h = 0:20
acf1 = 0ˆh # AR(1) with alpha = 0 (or white noise)
acf2 = 0.5ˆh # AR(1) with alpha = 0.5
acf3 = 0.9ˆh # Ar(1) with alpha = 0.9
plot(matrix(rep(h,3),3),cbind(acf1,acf2,acf3),col=rep(1:3,each=length(h)),

pch=rep(1:3,each = length(h)),xlab="h",ylab="ACF")
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6 Estimation

6.1 Estimation
• The mean and autocovariance/autocorrelation functions are theoretical constructions defined for

stochastic processes, but what about data? Here we have to estimate them.
• We will assume that the process is stationary.
• The (constant) mean can be estimated the usual way:

µ̂ = x̄ = 1
n

n∑
t=1

xt

• The autocovariance function can be estimated as follows (remember it only depends on h, not on t in
the case of stationarity):

γ̂(h) = 1
n

n−h∑
t=1

(xt − x̄)(xt+h − x̄)

• The (constant) variance is estimated as σ̂2 = γ̂(0).
• An estimate of the autocorrelation function is obtained as

ρ̂(h) = γ̂(h)
γ̂(0)
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6.2 The correlogram
• A plot of the sample acf as a function of the lag is called a correlogram.
• To get an idea of how a correlogram looks, we make simulated data from different models and plot the

correlograms below.

White noise:
w = ts(rnorm(100))
par(mfrow=c(1,2))
plot(w)
acf(w)
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• The correlogram is always 1 at lag 1

• For white noise, the true autocorrelation drops to zero.

• The estimated autocorrelation is never exactly zero - hence we get the small bars.

• The blue lines is a 95% confidence band for a test that the true autocorrelation is zero.

• Remember that there is 5% chance of rejecting a true null hypothesis. Thus, 5% of the bars can be
expected to exeed the blue lines.

• AR(1) process with α = 0.9:
w = ts(rnorm(100))
x1 = filter(w,0.9,method="recursive")
par(mfrow=c(1,2))
plot(x1)
acf(x1)
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• The true acf decays exponentially.

7 Non-stationary data

7.1 Check for stationarity
• We will primarily look at stationary processes the next time, but these will not always be good models

for data.

• First we need to check whether the assumption of stationarity is okay.

– One check is visual inspection of a plot of xt vs t to see whether there is any indication of
non-stationarity.

– Another visual check is a plot of the correlogram. If this tends very slowly to zero, this indicates
non-stationarity.

• Note: even though ρ(h) is only well-defined for stationary models, we can plug any data (stationary or
not) into the estimation formula. The estimate may help detecting deviations from stationarity.

7.2 Correlograms for non-stationary data
• Sine curve with added white noise:

w = ts(rnorm(100))
x1 = 5*sin(0.5*(1:100)) + w
par(mfrow=c(1,2))
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plot(x1)
acf(x1)
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• The periodic mean of the process results in a periodic behavior of the correlogram.

• A periodic behavior in the correlogram suggests seasonal behavior in the process.

• Straight line with added white noise:
w = ts(rnorm(100))
x1 = 0.1*(1:100) + w
par(mfrow=c(1,2))
plot(x1)
acf(x1)
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• The linear trend results in a slowly decaying, almost linear correlogram.

• Such a correlogram suggests a trend in the data.

• Data example: Electricity production.
par(mfrow=c(1,2))
plot(CBE)
acf(CBE)

13



Time

C
B

E

0 100 200 300 400

20
00

60
00

10
00

0
14

00
0

0 5 10 15 20 25
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Lag

A
C

F

Series  CBE

• There seems to be an increasing trend in the data.

• There is a periodic behavior around the increasing trend.

• It is reasonable to believe that the period is 12 months.

• We have the model
Xt = mt + st + Zt

where

– mt is the (deterministic) trend
– st is a (deterministic) seasonal term (st = st+12)
– Zt is a random (hopefully) stationary part

7.3 Detrending data
• The trend mt in the data can be estimated by a moving average.

• In the case of monthly variation,

m̂t =
1
2 xt−6 + xt−5 + · · · + xt + · · · + xt+5 + 1

2 xt+6

12

• We remove the trend by considering xt − m̂t.

• Next we find the seasonal term st by averaging xt − m̂t over all measurements in the given month.

– E.g., the value of st for January is given by averaging all values from January.

• We are left with the random part ẑt = xt − m̂t − ŝt.

• For the Australian electricity data:
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CBE <- ts(CBE,frequency=12)
plot(decompose(CBE))
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• The random term does not look stationary. The solution is to log-transform the data - see Ch. 1.5.5 in
the book.

logCBE <- ts(log(CBEdata[,3]),frequency=12)
plot(decompose(logCBE))
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random<-decompose(logCBE)$random[7:382]
acf(random, main="Random part of CBE data")
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