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1 One way analysis of variance
1.1 Example

• The data set chickwts is available in R, and on the course webpage.
• 71 newly hatched chicks were randomly allocated into six groups, and each group was given a different

feed supplement.
• Their weights in grams after six weeks are given along with feed types, i.e. we have a sample with

corresponding measurements of 2 variables:
– weight: a numeric variable giving the chick weight.
– feed: a factor giving the feed type.

• Always start with some graphics:
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library(mosaic)
gf_boxplot(weight ~ feed, data = chickwts)
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1.2 The ANOVA Model
• We measure the response y which in this case is weight.
• We want to study the effect of the factor x on y. In this case x =feed and divides the sample in g = 6

groups.
• The mean responses within the groups are denoted µ1, µ2, . . . , µg.
• We will assume that

– y = µx + ϵ, when y is a response in group x
– ϵ are a sample from a population with mean zero and standard deviation σ.
– The standard deviation for the population in each group is the same and equals σ
– The response variable, y, is normal distributed within each group.

• The ANOVA test is a test of equal means for the different groups.

2 Estimation of mean values
2.1 Estimates

• Least squares estimates for population means µ̂x is given by the average of the response measurements
in group x.

• For a given measured response y we let ŷ denote the model’s prediction of y, i.e.

ŷ = µ̂x

if y is a response for an observation in group x.
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• We use mean to find the mean, for each group:
mean(weight ~ feed, data = chickwts)

## casein horsebean linseed meatmeal soybean sunflower
## 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167

• We can e.g. see that ŷ = 323.6, when feed=casein but ŷ = 160.2, when feed=horsebean.
• Is it a significant difference ?

2.2 Contrast coding
• In many cases there is a group corresponding to “no treatment” and we are interested in the effect of

different treatments.
• In this example we only have different feeds, which are sorted in lexicographical order by R, so casein

is the reference.
• We can specify the model via:

– Intercept corresponding to the mean response for the reference (casein).
– For each of the other groups we have a contrast, which measures the difference between the

mean value for that group and the reference group.
• For a given contrast we can calculate standard error, t-score and p-value, and thereby investigate

whether there is a difference between this group and the reference group.
• In Agresti this is referred to as using dummy variables.

2.3 Example

model <- lm(weight ~ feed, data = chickwts)
summary(model)

##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -123.909 -34.413 1.571 38.170 103.091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 323.583 15.834 20.436 < 2e-16 ***
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
## feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
## feedmeatmeal -46.674 22.896 -2.039 0.045567 *
## feedsoybean -77.155 21.578 -3.576 0.000665 ***
## feedsunflower 5.333 22.393 0.238 0.812495
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

• We get information about contrasts and their significance:
• Intercept corresponding to casein has weight different from zero (p < 2 × 10−16) (of course, chickens

grow a lot over 6 weeks)
• Weight difference between casein and horsebean is extremely significant (p=2 × 10−9).
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• There is no significant weight difference between casein and sunflower (p=81%).

3 Overall test for effect
3.1 Graphical representation of models

• We have two alternative explanations of the data.
• Simple model with one parameter (mean): “The feed type doesn’t matter. The weight is just random

around a common mean value”.
• Complex model with six parameters (means): “The feed type is important. For each feed type we get a

different mean value and the weights are random around these values.”

## Warning in geom_point(aes(x = red_dot), color = "red"): All aesthetics have length 1, but the data has 71 rows.
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
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3.2 Hypotheses and test statistic
• Is the complex model significantly better (i.e. is there any effect of the explanatory grouping variable)?

We can write the corresponding hypotheses in two different ways
H0 : µ1 = µ2 = · · · = µg against Ha : At least 2 of the population means are different

• Alternatively
H0 : All contrasts are equal to zero. Ha : At least one contrast is non-zero.

• We will (indirectly) use R2 to do the test. If it is large, the complex model has good predictive power
compared to the simple model. To judge significance we use

Fobs = (n − g)R2

(g − 1)(1 − R2) = (TSS − SSE)/(g − 1)
SSE/(n − g) .

• Large values of R2 implies large values of Fobs, which points to the alternative hypothesis.
• I.e. when we have calculated the observed value Fobs, then we have to find the probability that a new

experiment would result in a larger value.
• TSS: error sum of squares if common mean. SSE: error sum of squares if different means.
• TSS-SSE: how much does error sum of squares increase if means are restricted to be equal.
• One can show that TSS-SSE is variation of group means around common mean - variance between

groups
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3.3 Interpretation of F statistic - Variance between/within groups
• It can be shown that the numerator of Fobs is a measure of the variance between the groups,

i.e. how much “boxes” vary around the total average (the red line).

• Likewise it can be shown the denominator of Fobs is a measure for the variance within groups,
i.e. how “tall” the boxes in the boxplot are.
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• The bigger deviations between the red line and the box means relative to the variation within boxes,
the less we trust H0. This is measured by the F-test statistic, which can be stated as

Fobs = variance between groups
variance within groups

3.4 Example

model <- lm(weight ~ feed, data = chickwts)
summary(model)

##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -123.909 -34.413 1.571 38.170 103.091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 323.583 15.834 20.436 < 2e-16 ***
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
## feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
## feedmeatmeal -46.674 22.896 -2.039 0.045567 *
## feedsoybean -77.155 21.578 -3.576 0.000665 ***
## feedsunflower 5.333 22.393 0.238 0.812495
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

• The last line gives us the value of Fobs = 15.36 and the corresponding p-value (5.9 × 10−10). Clearly
there is a significant difference between the types of feed.

4 Two way analysis of variance
4.1 Additive effects

• The data set ToothGrowth is available in R and on the webpage. For more info about this data, use
?ToothGrowth.

• The data describes the tooth length in guinea pigs where some receive vitamin C treatment and others
are given orange juice in different dosage.

• A total of 60 observations on 3 variables.

– [,1] len The tooth length
– [,2] supp The type of the supplement (OJ or VC)
– [,3] dose The dosage (LO, ME, HI)

• We will study the response len with the predictors supp and dose.

• At first we look at the model with additive effects

– len=µ + "effect of supp"+ "effect of dose" + error

• This is also called the main effects model since it does not contain interaction terms.

• The parameter µ corresponds to the Intercept and is the mean tooth length in the reference group
(supp OJ, dose LO).

• The effect of supp is the difference in mean when changing from OJ to VC.

• The effect of dose is the difference in mean when changing from LO to eitherME or HI.

4.2 Dummy coding
• Let us introduce dummy variables:

– sC = 1 if supp VC and zero otherwise.
– dM = 1 if dose is ME and zero otherwise.
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– dH = 1 if dose is HI and zero otherwise.
• Then we state the model

length = µ + β1sC + β2dM + β3dH + error.

• Interpretation:
– µ is the expected tooth length when supp is OJ and dose is LO (sC = dM = dH = 0)).
– β1 is the effect of supplement OJ to VC (sC = 1).
– β2 is the effect of increasing dosage from LO to ME (dM = 1).
– β3 is the effect of increasing dosage from LO to HI (dH = 1).

• As a two-way table:

LO ME HI
OJ µ µ + β2 µ + β3
V C µ + β1 µ + β1 + β2 µ + β1 + β3

4.3 Main effect model in R
• The main effects model is fitted by

MainEff <- lm(len ~ supp + dose, data = ToothGrowth)
summary(MainEff)

##
## Call:
## lm(formula = len ~ supp + dose, data = ToothGrowth)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.085 -2.751 -0.800 2.446 9.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.4550 0.9883 12.603 < 2e-16 ***
## suppVC -3.7000 0.9883 -3.744 0.000429 ***
## doseME 9.1300 1.2104 7.543 4.38e-10 ***
## doseHI 15.4950 1.2104 12.802 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.828 on 56 degrees of freedom
## Multiple R-squared: 0.7623, Adjusted R-squared: 0.7496
## F-statistic: 59.88 on 3 and 56 DF, p-value: < 2.2e-16

• The model has 4 parameters.
• The F test at the end compares with the (null) model with only one overall mean parameter.

4.4 Testing effect of supp
• Alternative model without effect of supp:

doseEff <- lm(len ~ dose, data = ToothGrowth)

• We can compare R2 to see if doseEff (Model 1) is sufficient to explain the data compared to MainEff
(Model 2). This is done by converting to F -statistic:

Fobs = (R2
2 − R2

1)/(df1 − df2)
(1 − R2

2)/df2
= (SSE1 − SSE2)/(df1 − df2)

(SSE2)/df2
.
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• SSE1 − SSE2: increase in error sum of square when using Model 1 instead of Model 2
• In R the calculations are done using anova:

anova(doseEff, MainEff)

## Analysis of Variance Table
##
## Model 1: len ~ dose
## Model 2: len ~ supp + dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 57 1025.78
## 2 56 820.43 1 205.35 14.017 0.0004293 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• p-value is 0.004 hence we reject that supp does not have an effect. Thus we prefer Model 2.

4.5 Testing effect of dose
• Alternative model without effect of dose:

suppEff <- lm(len ~ supp, data = ToothGrowth)
anova(suppEff, MainEff)

## Analysis of Variance Table
##
## Model 1: len ~ supp
## Model 2: len ~ supp + dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 58 3246.9
## 2 56 820.4 2 2426.4 82.811 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• p-value is ≈ 0 hence we reject that dose does not have an effect. Thus we prefer Model 2.

5 Interaction
5.1 Example

• We will extend the model by introducing an interaction between supp and dose.

• Interaction plot:
with(ToothGrowth, interaction.plot(dose, supp, len, col = 2:3))
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• For each of the supplement types we plot the average tooth length as a function of dosage.

• If the main effects model is correct then the difference between supplements is the same for all levels of
dosage, i.e. the curves should be parallel - except for noise.

• This does not seem to be the case.

• This is how the plot should look if the main effects model (no interaction) is correct:
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• Parallel lines mean that effect of supplement does not depend on dose !
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5.2 Dummy coding
• The extended model can be formulated as

length = µ + β1sC + β2dM + β3dH + β4sCdM + β5sCdH + error

• Interpretation:
– µ is the expected tooth length for supp OJ and dose LO (sC = dM = dH = 0).
– β1 is the effect of changing from supp OJ to VC, dose is LO (sC = 1, dM = dH = 0).
– β2 is the effect of increasing dose from LO to ME, when supp is OJ (sC = 0, dM = 1).
– β3 is the effect of increasing dose from LO to HI, when supp is OJ (sC = 0, dH = 1).
– β4 is an additional effect of both changing from supp OJ to VC and increasing dose from LO to ME

(sC = 1, dM = 1)
– β5 is an additional effect of both changing from supp OJ to VC and increasing dose from LO to HI

(sC = 1, dH = 1)
• As a two-way table:

LO ME HI
OJ µ µ + β2 µ + β3
V C µ + β1 µ + β1 + β2 + β4 µ + β1 + β3 + β5

• Further examples:
– effect of changing from supp OJ to VC if dose is LO is µ + β1 − µ = β1
– effect of changing from supp OJ to VC if dose is ME is µ + β1 + β2 + β4 − µ − β2 = β1 + β4
– effect of changing from supp OJ to VC if dose is HI is µ + β1 + β3 + β5 − µ − β3 = β1 + β5
– if β4 = 0 and β5 = 0 the effect of changing from OJ to VC does not depend on dose

5.3 Example
• We fit the interaction model by changing plus to multiply in the model expression from before:

Interaction <- lm(len ~ supp*dose, data = ToothGrowth)

• Now we can think of an experiment with 6 groups corresponding to each combination of the predictors.

• Is added interaction significant ? - we compare main effects model and more complex interaction model
using anova:

anova(MainEff, Interaction)

## Analysis of Variance Table
##
## Model 1: len ~ supp + dose
## Model 2: len ~ supp * dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 56 820.43
## 2 54 712.11 2 108.32 4.107 0.02186 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• With a p-value of 2.1860269% there is a significant interaction supp:dose, i.e. the lack of parallel curves
in the interaction plot is significant.

summary(Interaction)

##
## Call:
## lm(formula = len ~ supp * dose, data = ToothGrowth)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -8.20 -2.72 -0.27 2.65 8.27
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.230 1.148 11.521 3.60e-16 ***
## suppVC -5.250 1.624 -3.233 0.00209 **
## doseME 9.470 1.624 5.831 3.18e-07 ***
## doseHI 12.830 1.624 7.900 1.43e-10 ***
## suppVC:doseME -0.680 2.297 -0.296 0.76831
## suppVC:doseHI 5.330 2.297 2.321 0.02411 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.631 on 54 degrees of freedom
## Multiple R-squared: 0.7937, Adjusted R-squared: 0.7746
## F-statistic: 41.56 on 5 and 54 DF, p-value: < 2.2e-16

• Note the negative effect of changing from OJ to VC when dose is low is cancelled by the positive
interaction parameter β5=suppVC:doseHI) meaning almost no difference between OJ and VC when dose
is high (compare with interaction plot)

5.4 Hierarchical principle
• In presence of interaction effect it does not make sense to make tests for absence of main effects ! Indeed

each factor has an effect that just happens to vary depending on the other factor
• Hence start by investigating whether there is an interaction effect
• If yes: no further tests !
• If no: you may test main effects if relevant for your study
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