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0.1 Response variable and explanatory variable
• We conduct an experiment, where we at random choose 50 IT-companies and 50 service companies and

measure their profit ratio. Is there association between company type (IT/service) and profit ratio?
• In other words we compare samples from 2 different populations. For each company we register:

– The binary variable company type, which is called the explanatory variable and divides data
in 2 groups.

– The quantitative variable profit ratio, which is called the response variable.

0.2 Dependent/independent samples
• In the example with profit ratio of 50 IT-companies and 50 service companies we have independent

samples, since the same company cannot be in both groups.
• Now, think of another type of experiment, where we at random choose 50 IT-companies and measure

their profit ratio in both 2009 and 2010. Then we may be interested in whether there is association
between year and profit ratio?

• In this example we have dependent samples, since the same company is in both groups.
• Dependent samples may also be referred to as paired samples.

0.3 Comparison of two means (Independent samples)
• We consider the situation, where we have two quantitative samples:

– Population 1 has mean µ1, which is estimated by µ̂1 = ȳ1 based on a sample of size n1.
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– Population 2 has mean µ2, which is estimated by µ̂2 = ȳ2 based on a sample of size n2.
– We are interested in the difference µ2 − µ1, which is estimated by d = ȳ2 − ȳ1.
– Assume that we can find the estimated standard error sed of the difference and that this has

degrees of freedom df .
– Assume that the samples either are large or come from a normal population.

• Then we can construct a
– confidence interval for the unknown population difference of means µ2 − µ1 by

(ȳ2 − ȳ1) ± tcritsed,

where the critical t-score, tcrit, determines the confidence level.
– significance test:

∗ for the null hypothesis H0 : µ2 − µ1 = 0 and alternative hypothesis Ha : µ2 − µ1 ̸= 0.
∗ which uses the test statistic: tobs = (ȳ2−ȳ1)−0

sed
, that has to be evaluated in a t-distribution with

df degrees of freedom.

0.4 Comparison of two means (Independent samples)
• In the independent samples situation it can be shown that

sed =
√

se2
1 + se2

2,

where se1 and se2 are estimated standard errors for the sample means in populations 1 and 2, respectively.
• We recall, that for these we have se = s√

n
, i.e.

sed =

√
s2

1
n1

+ s2
2

n2
,

where s1 and s2 are estimated standard deviations for population 1 and 2, respectively.
• The degrees of freedom df for sed can be estimated by a complicated formula, which we will not

present here.
• For the confidence interval and the significance test we note that:

– If both n1 and n2 are above 30, then we can use the standard normal distribution (z-score) rather
than the t-distribution (t-score).

– If n1 or n2 are below 30, then we let R calculate the degrees of freedom and p-value/confidence
interval.

0.5 Example: Comparing two means (independent samples)
We return to the Chile data. We study the association between the variables sex and statusquo (scale
of support for the status-quo). So, we will perform a significance test to test for difference in the mean of
statusquo for male and females.
Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
library(mosaic)
fv <- favstats(statusquo ~ sex, data = Chile)
fv

## sex min Q1 median Q3 max mean sd n missing
## 1 F -1.80 -0.975 0.121 1.033 2.02 0.0657 1.003 1368 11
## 2 M -1.74 -1.032 -0.216 0.861 2.05 -0.0684 0.993 1315 6

• Difference: d = 0.0657 − (−0.0684) = 0.1341.
• Estimated standard deviations: s1 = 1.0032 (females) and s2 = 0.9928 (males).
• Sample sizes: n1 = 1368 and n2 = 1315.
• Estimated standard error of difference: sed =

√
s2

1
n1

+ s2
2

n2
=

√
1.00322

1368 + 0.99282

1315 = 0.0385.
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• Observed t-score for H0 : µ1 − µ2 = 0 is: tobs = d−0
sed

= 0.1341
0.0385 = 3.4786.

• Since both sample sizes are “pretty large” (> 30), we can use the z-score instead of the t-score for
finding the p-value (i.e. we use the standard normal distribution):

1 - pdist("norm", q = 3.4786, xlim = c(-4, 4))

0.0
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A:1.000

B:0.000

## [1] 0.0002520202

• Then the p-value is 2 · 0.00025 = 0.0005, so we reject the null hypothesis.
• We can leave all the calculations to R by using t.test:

t.test(statusquo ~ sex, data = Chile)

##
## Welch Two Sample t-test
##
## data: statusquo by sex
## t = 3.4786, df = 2678.7, p-value = 0.0005121
## alternative hypothesis: true difference in means between group F and group M is not equal to 0
## 95 percent confidence interval:
## 0.05849179 0.20962982
## sample estimates:
## mean in group F mean in group M
## 0.06570627 -0.06835453

• We recognize the t-score 3.4786 and the p-value 0.0005. The estimated degrees of freedom df = 2679 is
so large that we can not tell the difference between results obtained using z-score and t-score.

0.6 Comparison of two means: confidence interval (independent samples)
• We have already found all the ingredients to construct a confidence interval for µ2 − µ1:
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– d = ȳ2 − ȳ1 estimates µ2 − µ1.
– sed =

√
s2

1
n1

+ s2
2

n2
estimates the standard error of d.

• Then:
d ± tcritsed

is a confidence interval for µ2 − µ1.
• The critical t-score, tcrit is chosen corresponding to the wanted confidence level. If n1 and n2 both are

greater than 30, then tcrit = 2 yields a confidence level of approximately 95%.

0.7 Comparison of two means: paired t-test (dependent samples)
• Experiment:

– You choose 32 students at random and measure their average reaction time in a driving simulator
while they are listening to radio or audio books.

– Later the same 32 students redo the simulated driving while talking on a cell phone.
• It is interesting to investigate whether or not the fact that you are actively participating in a conversation

changes your average reaction time compared to when you are passively listening.
• So we have 2 samples corresponding to with/without phone. In this case we have dependent samples,

since we have 2 measurement for each student.
• We use the following strategy for analysis:

– For each student calculate the change in average reaction time with and without talking on the
phone.

– The changes d1, d2, . . . , d32 are now considered as ONE sample from a population with mean µ.
– Test the hypothesis H0 : µ = 0 as usual (using a t-test for testing the mean as in the previous

lecture).

0.7.1 Reaction time example

• Data is organized in a data frame with 3 variables:
– student (integer – a simple id)
– reaction_time (numeric – average reaction time in milliseconds)
– phone (factor – yes/no indicating whether speaking on the phone)

reaction <- read.delim("https://asta.math.aau.dk/datasets?file=reaction.txt")
head(reaction, n = 3)

## student reaction_time phone
## 1 1 604 no
## 2 2 556 no
## 3 3 540 no

Instead of doing manual calculations we let R perform the significance test (using t.test with paired =
TRUE as our samples are paired/dependent):
yes <- subset(reaction, phone == "yes")
no <- subset(reaction, phone == "no")
all(yes$student == no$student)

## [1] TRUE
reaction_paired <- data.frame(student = no$student, yes = yes$reaction_time, no = no$reaction_time)
t.test(reaction_paired$no, reaction_paired$yes, paired = TRUE)

##
## Paired t-test
##
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## data: reaction_paired$no and reaction_paired$yes
## t = -5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -69.54814 -31.70186
## sample estimates:
## mean difference
## -50.625

• With a p-value of 0.0000058 we reject that speaking on the phone has no influence on the reaction time.

• To understand what is going on, we can manually find the reaction time difference for each student and
do a one sample t-test on this difference:

reaction_paired$diff <- reaction_paired$yes - reaction_paired$no
head(reaction_paired)

## student yes no diff
## 1 1 636 604 32
## 2 2 623 556 67
## 3 3 615 540 75
## 4 4 672 522 150
## 5 5 601 459 142
## 6 6 600 544 56
t.test( ~ diff, data = reaction_paired)

##
## One Sample t-test
##
## data: diff
## t = 5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 31.70186 69.54814
## sample estimates:
## mean of x
## 50.625

1 Comparison of two proportions
1.1 Comparison of two proportions

• We consider the situation, where we have two qualitative samples and we investigate whether a given
property is present or not:

– Let the proportion of population 1 which has the property be π1, which is estimated by π̂1 based
on a sample of size n1.

– Let the proportion of population 2 which has the property be π2, which is estimated by π̂2 based
on a sample of size n2.

– We are interested in the difference π2 − π1, which is estimated by d = π̂2 − π̂1.
– Assume that we can find the estimated standard error sed of the difference.

• Then we can construct
– an approximate confidence interval for the difference, π2 − π1.
– a significance test.
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1.2 Comparison of two proportions: Independent samples
• In the situation where we have independent samples we know that

sed =
√

se2
1 + se2

2,

where se1 and se2 are the estimated standard errors for the sample proportion in population 1 and 2,
respectively.

• We recall, that these are given by se =
√

π̂(1−π̂)
n , i.e.

sed =

√
π̂1(1 − π̂1)

n1
+ π̂2(1 − π̂2)

n2
.

• A (approximate) confidence interval for π2 − π1 is obtained by the usual construction:

(π̂2 − π̂1) ± zcritsed,

where the critical z-score determines the confidence level.

1.3 Approximate test for comparing two proportions (independent samples)
• We consider the null hypothesis H0: π1 = π2 (equivalently H0 : π1 − π2 = 0) and the alternative

hypothesis Ha: π1 ̸= π2.
• Assuming H0 is true, we have a common proportion π, which is estimated by

π̂ = n1π̂1 + n2π̂2

n1 + n2
,

i.e. we aggregate the populations and calculate the relative frequency of the property (with other words:
we estimate the proportion, π, as if the two samples were one).

• Rather than using the estimated standard error of the difference from previous, we use the following
that holds under H0:

se0 =

√
π̂(1 − π̂)

(
1
n1

+ 1
n2

)
• The observed test statistic/z-score for H0 is then:

zobs = (π̂2 − π̂1) − 0
se0

,

which is evaluated in the standard normal distribution.
• The p-value is calculated in the usual way.

WARNING: The approximation is only good, when n1π̂, n1(1 − π̂), n2π̂, n2(1 − π̂) all are greater than 5.

1.4 Example: Approximate confidence interval and test for comparing propor-
tions

We return to the Chile dataset. We make a new binary variable indicating whether the person intends to
vote no or something else (and we remember to tell R that it should think of this as a grouping variable,
i.e. a factor):
Chile$voteNo <- relevel(factor(Chile$vote == "N"), ref = "TRUE")

We study the association between the variables sex and voteNo:
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tab <- tally( ~ sex + voteNo, data = Chile, useNA = "no")
tab

## voteNo
## sex TRUE FALSE
## F 363 946
## M 526 697

This gives us all the ingredients needed in the hypothesis test:

• Estimated proportion of men that vote no: π̂1 = 526
526+697 = 0.430

• Estimated proportion of women that vote no: π̂2 = 363
363+946 = 0.277

1.5 Example: Approximate confidence interval (cont.)
• Estimated difference:

d = π̂2 − π̂1 = 0.277 − 0.430 = −0.153

• Standard error of difference:

sed =

√
π̂1(1 − π̂1)

n1
+ π̂2(1 − π̂2)

n2

=
√

0.430(1 − 0.430)
1223 + 0.277(1 − 0.277)

1309 = 0.0188.

• Approximate 95% confidence interval for difference:

d ± 1.96 · sed = (−0.190, −0.116).

1.6 Example: p-value (cont.)
• Estimated common proportion:

π̂ = 1223 × 0.430 + 1309 × 0.277
1309 + 1223 = 526 + 363

1309 + 1223 = 0.351.

• Standard error of difference when H0 : π1 = π2 is true:

se0 =

√
π̂(1 − π̂)

(
1
n1

+ 1
n2

)
= 0.0190.

• The observed test statistic/z-score:
zobs = d

se0
= −8.06.

• The test for H0 against Ha : π1 ≠ π2 yields a p-value that is practically zero, i.e. we can reject that the
proportions are equal.

1.7 Automatic calculation in R

Chile2 <- subset(Chile, !is.na(voteNo))
prop.test(voteNo ~ sex, data = Chile2, correct = FALSE)

##
## 2-sample test for equality of proportions without continuity correction
##
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## data: tally(voteNo ~ sex)
## X-squared = 64.777, df = 1, p-value = 8.389e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.1896305 -0.1159275
## sample estimates:
## prop 1 prop 2
## 0.2773109 0.4300899

1.8 Fisher’s exact test
• If n1π̂, n1(1 − π̂), n2π̂, n2(1 − π̂) are not all greater than 5, then the approximate test cannot be

trusted. Instead you can use Fisher’s exact test:
fisher.test(tab)

##
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 1.04e-15
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4292768 0.6021525
## sample estimates:
## odds ratio
## 0.5085996

• Again the p-value is seen to be extremely small, so we definitely reject the null hypothesis of equal
voteNo proportions for women and men.
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1.9 Agresti: Overview of comparison of two groups
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