Comparison of two groups

The ASTA team

Contents

	0.1	Response variable and explanatory variable			
	0.2	Dependent/independent samples			
	0.3	Comparison of two means (Independent samples)			
	0.4	Comparison of two means (Independent samples)			
	0.5	Example: Comparing two means (independent samples)			
	0.6	Comparison of two means: confidence interval (independent samples)			
	0.7	Comparison of two means: paired t-test (dependent samples)			
1		Comparison of two proportions			
1		Comparison of two proportions			
	1.1				
	1.2	Comparison of two proportions: Independent samples			
	1.3	Approximate test for comparing two proportions (independent samples)			
	1.4	Example: Approximate confidence interval and test for comparing proportions			
	1.5	Example: Approximate confidence interval (cont.)			
	1.6	Example: <i>p</i> -value (cont.)			
	1.7	Automatic calculation in R			
	1.8	Fisher's exact test			
	1.9	Agresti: Overview of comparison of two groups			

0.1 Response variable and explanatory variable

- We conduct an experiment, where we at random choose 50 IT-companies and 50 service companies and measure their profit ratio. Is there association between company type (IT/service) and profit ratio?
- In other words we compare samples from 2 different populations. For each company we register:
 - The binary variable company type, which is called the explanatory variable and divides data in 2 groups.
 - The quantitative variable profit ratio, which is called **the response variable**.

0.2 Dependent/independent samples

- In the example with profit ratio of 50 IT-companies and 50 service companies we have **independent** samples, since the same company cannot be in both groups.
- Now, think of another type of experiment, where we at random choose 50 IT-companies and measure their profit ratio in both 2009 and 2010. Then we may be interested in whether there is association between year and profit ratio?
- In this example we have **dependent samples**, since the same company is in both groups.
- Dependent samples may also be referred to as paired samples.

0.3 Comparison of two means (Independent samples)

- We consider the situation, where we have two quantitative samples:
 - Population 1 has mean μ_1 , which is estimated by $\hat{\mu}_1 = \bar{y}_1$ based on a sample of size n_1 .

- Population 2 has mean μ_2 , which is estimated by $\hat{\mu}_2 = \bar{y}_2$ based on a sample of size n_2 .
- We are interested in the difference $\mu_2 \mu_1$, which is estimated by $d = \bar{y}_2 \bar{y}_1$.
- Assume that we can find the **estimated standard error** se_d of the difference and that this has degrees of freedom df.
- Assume that the samples either are large or come from a normal population.
- Then we can construct a
 - confidence interval for the unknown population difference of means $\mu_2 \mu_1$ by

$$(\bar{y}_2 - \bar{y}_1) \pm t_{crit} se_d,$$

where the critical t-score, t_{crit} , determines the confidence level.

- significance test:

 - * for the null hypothesis H_0 : $\mu_2 \mu_1 = 0$ and alternative hypothesis H_a : $\mu_2 \mu_1 \neq 0$. * which uses the test statistic: $t_{obs} = \frac{(\bar{y}_2 \bar{y}_1) 0}{se_d}$, that has to be evaluated in a t-distribution with df degrees of freedom.

0.4Comparison of two means (Independent samples)

• In the independent samples situation it can be shown that

$$se_d = \sqrt{se_1^2 + se_2^2},$$

where se_1 and se_2 are estimated standard errors for the sample means in populations 1 and 2, respectively.

• We recall, that for these we have $se = \frac{s}{\sqrt{n}}$, i.e.

$$se_d = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}},$$

where s_1 and s_2 are estimated standard deviations for population 1 and 2, respectively.

- The degrees of freedom df for se_d can be estimated by a complicated formula, which we will not present here.
- For the confidence interval and the significance test we note that:
 - If both n_1 and n_2 are above 30, then we can use the standard normal distribution (z-score) rather than the t-distribution (t-score).
 - If n_1 or n_2 are below 30, then we let **R** calculate the degrees of freedom and p-value/confidence interval.

Example: Comparing two means (independent samples) 0.5

We return to the Chile data. We study the association between the variables sex and statusquo (scale of support for the status-quo). So, we will perform a significance test to test for difference in the mean of statusquo for male and females.

```
Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
library(mosaic)
fv <- favstats(statusquo ~ sex, data = Chile)
fv
```

```
##
                   Q1 median
                                Q3 max
     sex
           min
                                                    sd
                                                          n missing
                                           mean
       F -1.80 -0.975 0.121 1.033 2.02 0.0657 1.003 1368
       M -1.74 -1.032 -0.216 0.861 2.05 -0.0684 0.993 1315
```

- Difference: d = 0.0657 (-0.0684) = 0.1341.
- Estimated standard deviations: $s_1 = 1.0032$ (females) and $s_2 = 0.9928$ (males).
- Sample sizes: $n_1 = 1368$ and $n_2 = 1315$.
- Estimated standard error of difference: $se_d = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{1.0032^2}{1368} + \frac{0.9928^2}{1315}} = 0.0385.$

- Observed t-score for H_0 : $\mu_1 \mu_2 = 0$ is: $t_{obs} = \frac{d-0}{se_d} = \frac{0.1341}{0.0385} = 3.4786$. Since both sample sizes are "pretty large" (> 30), we can use the z-score instead of the t-score for finding the p-value (i.e. we use the standard normal distribution):

```
1 - pdist("norm", q = 3.4786, xlim = c(-4, 4))
```


- ## [1] 0.0002520202
 - Then the p-value is $2 \cdot 0.00025 = 0.0005$, so we reject the null hypothesis.
 - We can leave all the calculations to ${\bf R}$ by using t.test:

```
t.test(statusquo ~ sex, data = Chile)
```

```
##
   Welch Two Sample t-test
##
##
## data: statusquo by sex
## t = 3.4786, df = 2678.7, p-value = 0.0005121
## alternative hypothesis: true difference in means between group F and group M is not equal to 0
## 95 percent confidence interval:
   0.05849179 0.20962982
## sample estimates:
## mean in group F mean in group M
##
        0.06570627
                       -0.06835453
```

• We recognize the t-score 3.4786 and the p-value 0.0005. The estimated degrees of freedom df = 2679 is so large that we can not tell the difference between results obtained using z-score and t-score.

Comparison of two means: confidence interval (independent samples)

• We have already found all the ingredients to construct a **confidence interval for** $\mu_2 - \mu_1$:

-
$$d = \bar{y}_2 - \bar{y}_1$$
 estimates $\mu_2 - \mu_1$.
- $se_d = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ estimates the standard error of d .

Then:

$$d \pm t_{crit} s e_d$$

is a confidence interval for $\mu_2 - \mu_1$.

• The critical t-score, t_{crit} is chosen corresponding to the wanted confidence level. If n_1 and n_2 both are greater than 30, then $t_{crit} = 2$ yields a confidence level of approximately 95%.

0.7 Comparison of two means: paired t-test (dependent samples)

- Experiment:
 - You choose 32 students at random and measure their average reaction time in a driving simulator while they are listening to radio or audio books.
 - Later the same 32 students redo the simulated driving while talking on a cell phone.
- It is interesting to investigate whether or not the fact that you are actively participating in a conversation changes your average reaction time compared to when you are passively listening.
- So we have 2 samples corresponding to with/without phone. In this case we have **dependent** samples, since we have 2 measurement for each student.
- We use the following strategy for analysis:
 - For each student calculate the change in average reaction time with and without talking on the phone.
 - The changes d_1, d_2, \ldots, d_{32} are now considered as **ONE** sample from a population with mean μ .
 - Test the hypothesis $H_0: \mu = 0$ as usual (using a t-test for testing the mean as in the previous lecture).

0.7.1 Reaction time example

- Data is organized in a data frame with 3 variables:
 - student (integer a simple id)
 - reaction_time (numeric average reaction time in milliseconds)
 - phone (factor yes/no indicating whether speaking on the phone)

```
reaction <- read.delim("https://asta.math.aau.dk/datasets?file=reaction.txt")
head(reaction, n = 3)</pre>
```

Instead of doing manual calculations we let **R** perform the significance test (using t.test with paired = TRUE as our samples are paired/dependent):

```
yes <- subset(reaction, phone == "yes")
no <- subset(reaction, phone == "no")
all(yes$student == no$student)</pre>
```

```
## [1] TRUE
```

```
reaction_paired <- data.frame(student = no$student, yes = yes$reaction_time, no = no$reaction_time)
t.test(reaction_paired$no, reaction_paired$yes, paired = TRUE)</pre>
```

```
##
## Paired t-test
##
```

```
## data: reaction_paired$no and reaction_paired$yes
## t = -5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -69.54814 -31.70186
## sample estimates:
## mean difference
## -50.625
```

- With a p-value of 0.0000058 we reject that speaking on the phone has no influence on the reaction time.
- To understand what is going on, we can manually find the reaction time difference for each student and do a one sample t-test on this difference:

```
reaction_paired$diff <- reaction_paired$yes - reaction_paired$no</pre>
head(reaction_paired)
     student yes no diff
##
## 1
           1 636 604
## 2
           2 623 556
                       67
## 3
           3 615 540
           4 672 522
           5 601 459
## 5
           6 600 544
t.test( ~ diff, data = reaction_paired)
##
    One Sample t-test
##
## data: diff
## t = 5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
  31.70186 69.54814
## sample estimates:
## mean of x
      50.625
##
```

1 Comparison of two proportions

1.1 Comparison of two proportions

- We consider the situation, where we have two qualitative samples and we investigate whether a given property is present or not:
 - Let the proportion of population 1 which has the property be π_1 , which is estimated by $\hat{\pi}_1$ based on a sample of size n_1 .
 - Let the proportion of population 2 which has the property be π_2 , which is estimated by $\hat{\pi}_2$ based on a sample of size n_2 .
 - We are interested in the difference $\pi_2 \pi_1$, which is estimated by $d = \hat{\pi}_2 \hat{\pi}_1$.
 - Assume that we can find the **estimated standard error** se_d of the difference.
- Then we can construct
 - an approximate confidence interval for the difference, $\pi_2 \pi_1$.
 - a significance test.

1.2 Comparison of two proportions: Independent samples

• In the situation where we have independent samples we know that

$$se_d = \sqrt{se_1^2 + se_2^2},$$

where se_1 and se_2 are the estimated standard errors for the sample proportion in population 1 and 2, respectively.

• We recall, that these are given by $se = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$, i.e.

$$se_d = \sqrt{\frac{\hat{\pi}_1(1-\hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}}.$$

• A (approximate) confidence interval for $\pi_2 - \pi_1$ is obtained by the usual construction:

$$(\hat{\pi}_2 - \hat{\pi}_1) \pm z_{crit} s e_d,$$

where the critical z-score determines the confidence level.

1.3 Approximate test for comparing two proportions (independent samples)

- We consider the null hypothesis H_0 : $\pi_1 = \pi_2$ (equivalently H_0 : $\pi_1 \pi_2 = 0$) and the alternative hypothesis H_a : $\pi_1 \neq \pi_2$.
- Assuming H_0 is true, we have a common proportion π , which is estimated by

$$\hat{\pi} = \frac{n_1 \hat{\pi}_1 + n_2 \hat{\pi}_2}{n_1 + n_2},$$

i.e. we aggregate the populations and calculate the relative frequency of the property (with other words: we estimate the proportion, π , as if the two samples were one).

• Rather than using the estimated standard error of the difference from previous, we use the following that holds under H_0 :

$$se_0 = \sqrt{\hat{\pi}(1-\hat{\pi})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

• The observed test statistic/z-score for H_0 is then:

$$z_{obs} = \frac{(\hat{\pi}_2 - \hat{\pi}_1) - 0}{se_0},$$

which is evaluated in the standard normal distribution.

• The p-value is calculated in the usual way.

WARNING: The approximation is only good, when $n_1\hat{\pi}$, $n_1(1-\hat{\pi})$, $n_2\hat{\pi}$, $n_2(1-\hat{\pi})$ all are greater than 5.

1.4 Example: Approximate confidence interval and test for comparing proportions

We return to the Chile dataset. We make a new binary variable indicating whether the person intends to vote no or something else (and we remember to tell **R** that it should think of this as a grouping variable, i.e. a factor):

We study the association between the variables sex and voteNo:

```
tab <- tally( ~ sex + voteNo, data = Chile, useNA = "no")
tab
```

```
##
      voteNo
## sex TRUE FALSE
        363
##
     М
        526
               697
```

This gives us all the ingredients needed in the hypothesis test:

- Estimated proportion of men that vote no: $\hat{\pi}_1 = \frac{526}{526+697} = 0.430$ Estimated proportion of women that vote no: $\hat{\pi}_2 = \frac{363}{363+946} = 0.277$

Example: Approximate confidence interval (cont.) 1.5

• Estimated difference:

$$d = \hat{\pi}_2 - \hat{\pi}_1 = 0.277 - 0.430 = -0.153$$

• Standard error of difference:

$$se_d = \sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}$$
$$= \sqrt{\frac{0.430(1 - 0.430)}{1223} + \frac{0.277(1 - 0.277)}{1309}} = 0.0188.$$

• Approximate 95% confidence interval for difference:

$$d \pm 1.96 \cdot se_d = (-0.190, -0.116).$$

Example: p-value (cont.)

• Estimated common proportion:

$$\hat{\pi} = \frac{1223 \times 0.430 + 1309 \times 0.277}{1309 + 1223} = \frac{526 + 363}{1309 + 1223} = 0.351.$$

• Standard error of difference when $H_0: \pi_1 = \pi_2$ is true:

$$se_0 = \sqrt{\hat{\pi}(1-\hat{\pi})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 0.0190.$$

• The observed test statistic/z-score:

$$z_{obs} = \frac{d}{se_0} = -8.06.$$

• The test for H_0 against $H_a: \pi_1 \neq \pi_2$ yields a p-value that is practically zero, i.e. we can reject that the proportions are equal.

Automatic calculation in R 1.7

```
Chile2 <- subset(Chile, !is.na(voteNo))</pre>
prop.test(voteNo ~ sex, data = Chile2, correct = FALSE)
```

2-sample test for equality of proportions without continuity correction

```
## data: tally(voteNo ~ sex)
## X-squared = 64.777, df = 1, p-value = 8.389e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.1896305 -0.1159275
## sample estimates:
## prop 1 prop 2
## 0.2773109 0.4300899
```

1.8 Fisher's exact test

• If $n_1\hat{\pi}$, $n_1(1-\hat{\pi})$, $n_2\hat{\pi}$, $n_2(1-\hat{\pi})$ are not all greater than 5, then the approximate test cannot be trusted. Instead you can use Fisher's exact test:

```
fisher.test(tab)
```

```
##
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 1.04e-15
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4292768 0.6021525
## sample estimates:
## odds ratio
## 0.5085996
```

• Again the p-value is seen to be extremely small, so we definitely reject the null hypothesis of equal voteNo proportions for women and men.

1.9 Agresti: Overview of comparison of two groups

TABLE 7.10: Summary of Comparison Methods for Two Groups, for Independent Random Samples

		Type of Response Variable		
		Categorical	Quantitative	
E	stimation			
1.	Parameter	$\pi_2 - \pi_1$	$\mu_2 - \mu_1$	
2.	Point estimate	$\begin{array}{ccc}\pi_2 & - & \pi_1\\\hat{\pi}_2 & - & \hat{\pi}_1\end{array}$	$\overline{y}_2 - \overline{y}_1$	
3.	Standard error	$se = \sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}$ $(\hat{\pi}_2 - \hat{\pi}_1) \pm z(se)$	$se = \sqrt{\frac{s_1^2 - \overline{y}_1}{n_1} + \frac{s_2^2}{n_2}}$	
4.	Confidence interval	$(\hat{\pi}_2 - \hat{\pi}_1) \pm z(se)$	$(\overline{y}_2 - \overline{y}_1) \pm t(se)$	
Si	gnificance testing			
1.	Assumptions	Randomization	Randomization	
		≥10 observations in each	Normal population dist.'s	
		category, for each group	(robust, especially for large n's)	
2.	Hypotheses	$H_0: \pi_1 = \pi_2$	$H_0: \mu_1 = \mu_2$	
		$(\pi_2 - \pi_1 = 0)$	$(\mu_2 - \mu_1 = 0)$	
		H_a : $\pi_1 \neq \pi_2$	$H_a: \mu_1 \neq \mu_2$	
3.	Test statistic	$z = \frac{\hat{\pi}_2 - \hat{\pi}_1}{\sigma}$	$t = \frac{\overline{y}_2 - \overline{y}_1}{2}$	
4.	4. <i>P</i> -value Two-tail probability from standar		om standard normal or t	
		(Use one tail for one-sided alternative)		