Chi-square and ordinal tests

The ASTA team

Contents

1	Con	ntingency tables 1
	1.1	A contingency table
	1.2	A conditional distribution
	1.3	Independence
	1.4	The Chi-squared test for independence
	1.5	Calculation of expected table
	1.6	Chi-squared (χ^2) test statistic
	1.7	χ^2 -test template
	1.8	The function chisq.test
	1.9	The χ^2 -distribution
	1.10	Summary
		Residual analysis
	1.12	Residual analysis in R
	1.13	Cramér's V
2	Ord	linal variables
	2.1	Association between ordinal variables
	2.2	Gamma coefficient
	2.3	Gamma coefficient
	2.4	Example
3	Vali	idation of data
	3.1	Goodness of fit test
	3.2	Example
	3.3	Goodness of fit test
	3.4	Example
	3.5	Test in R

1 Contingency tables

1.1 A contingency table

- The dataset popularKids, we study the association between the factors Goals and Urban.Rural:
 - Urban.Rural: The students were selected from urban, suburban, and rural schools.
 - Goals: The students indicated whether good grades, athletic ability, or popularity was most important to them.
- Based on a sample we make a cross tabulation of the factors and we get a so-called **contingency table** (krydstabel).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.dat")</pre>
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
##
               Goals
  Urban.Rural Grades Popular Sports Total
##
##
      Rural
                    57
                             42
##
      Suburban
                    87
                                     22
                                          151
##
      Urban
                   103
                             49
                                     26
                                          178
                   247
##
      Total
                            141
                                     90
                                          478
```

1.2 A conditional distribution

• Another representation of data is the probability distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 1 (up to rounding):

```
##
               Goals
## Urban.Rural Grades Popular Sports
                          0.336
                                 0.282 1.000
##
      Rural
                 0.383
##
      Suburban
                 0.576
                          0.278
                                 0.146 1.000
##
      Urban
                 0.579
                          0.275
                                 0.146 1.000
##
      Total
                 0.517
                          0.295
                                0.188 1.000
```

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
 - Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

1.3 Independence

- Recall, that two factors are **independent**, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be **dependent**.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

```
##
               Goals
## Urban.Rural Grades Popular Sports
##
      Rural
                    0.5
                             0.3
                    0.5
                             0.3
                                     0.2
##
      Suburban
##
      Urban
                    0.5
                             0.3
                                     0.2
```

- Then the factors Goals and Urban. Rural are independent.
- We take a sample and "measure" the factors F_1 and F_2 . E.g. Goals and Urban.Rural for a random child
- The hypothesis of interest today is:

 $H_0: F_1 \text{ and } F_2 \text{ are independent}, \quad H_a: F_1 \text{ and } F_2 \text{ are dependent}.$

1.4 The Chi-squared test for independence

• Our best guess of the distribution of Goals is the relative frequencies in the sample:

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
n <- margin.table(tab)
pctGoals <- round(margin.table(tab, 2) / n, 3)
pctGoals</pre>
```

- ## Goals ## Grades Popular Sports ## 0.517 0.295 0.188
 - If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
 - The corresponding expected counts in the sample are then:

```
##
              Goals
##
  Urban.Rural Grades
                              Popular
                                            Sports
                                                           Sum
                              44.0 (0.295)
                                             28.1 (0.188) 149.0 (1.000)
##
      Rural
                77.0 (0.517)
##
      Suburban
                78.0 (0.517)
                              44.5 (0.295)
                                             28.4 (0.188) 151.0 (1.000)
                92.0 (0.517) 52.5 (0.295)
##
      Urban
                                             33.5 (0.188) 178.0 (1.000)
##
      Sum
               247.0 (0.517) 141.0 (0.295)
                                             90.0 (0.188) 478.0 (1.000)
```

1.5 Calculation of expected table

pctexptab

```
##
              Goals
## Urban.Rural Grades
                              Popular
                                            Sports
                                                           Sum
##
      Rural
                77.0 (0.517)
                              44.0 (0.295)
                                             28.1 (0.188) 149.0 (1.000)
      Suburban
               78.0 (0.517)
                               44.5 (0.295)
                                             28.4 (0.188) 151.0 (1.000)
##
##
      Urban
                92.0 (0.517)
                              52.5 (0.295)
                                             33.5 (0.188) 178.0 (1.000)
##
      Sum
               247.0 (0.517) 141.0 (0.295)
                                             90.0 (0.188) 478.0 (1.000)
```

- We note that
 - The relative frequency for a given column is **column total** divided by **table total**. For example Grades, which is $\frac{247}{478} = 0.517$.
 - The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's **row total**. For example Rural and Grades: $149 \times 0.517 = 77.0$.
- This can be summarized to:
 - The expected value in a cell is the product of the cell's row total and column total divided by the table total

1.6 Chi-squared (χ^2) test statistic

• We have an **observed table**:

tab

```
##
               Goals
   Urban.Rural Grades Popular Sports
##
                     57
##
      Rural
                              50
                                      42
      Suburban
                     87
                              42
                                      22
##
##
      Urban
                    103
                              49
                                      26
```

• And an **expected table**, if H_0 is true:

```
##
               Goals
## Urban.Rural Grades Popular Sports Sum
##
                 77.0
                        44.0
                                       151.0
##
      Suburban
                 78.0
                        44.5
                                 28.4
##
      Urban
                 92.0
                        52.5
                                 33.5
                                       178.0
      Sum
                247.0
                      141.0
                                 90.0 478.0
##
```

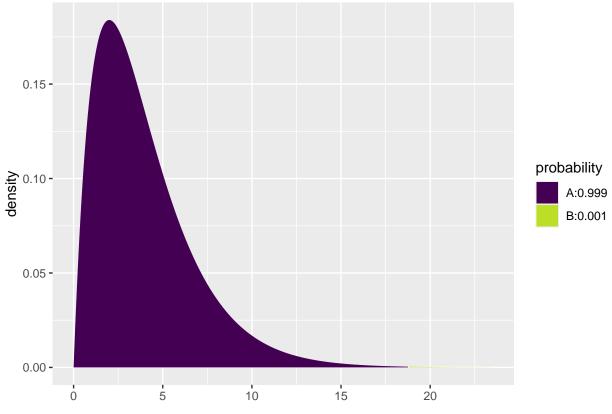
- If these tables are "far from each other", then we reject H_0 . We want to measure the distance via the Chi-squared test statistic:
 - $-X^2 = \sum_{f_e} \frac{(f_o f_e)^2}{f_e}$: Sum over all cells in the table
 - f_o is the frequency in a cell in the observed table
 - f_e is the corresponding frequency in the expected table.
- We have:

$$X_{obs}^2 = \frac{(57 - 77)^2}{77} + \ldots + \frac{(26 - 33.5)^2}{33.5} = 18.8$$

• Is this a large distance??

1.7 χ^2 -test template.

- We want to test the hypothesis H_0 of independence in a table with r rows and c columns:
 - We take a sample and calculate X^2_{obs} the observed value of the test statistic.
 - p-value: Assume H_0 is true. What is then the chance of obtaining a larger X^2 than X_{obs}^2 , if we repeat the experiment?
- This can be approximated by the χ^2 -distribution with df = (r-1)(c-1) degrees of freedom.
- For Goals and Urban.Rural we have r=c=3, i.e. df=4 and $X_{obs}^2=18.8,$ so the p-value is:
- 1 pdist("chisq", 18.8, df = 4)



[1] 0.0008603303

 \bullet There is clearly a significant association between ${\tt Goals}$ and ${\tt Urban.Rural}.$

1.8 The function chisq.test

• All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)</pre>
testStat <- chisq.test(tab, correct = FALSE)</pre>
testStat
##
##
   Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
testStat$expected
##
              Goals
## Urban.Rural
                 Grades Popular
##
      Rural
               76.99372 43.95188 28.05439
##
      Suburban 78.02720 44.54184 28.43096
##
      Urban
               91.97908 52.50628 33.51464
```

• The frequency data can also be put directly into a matrix.

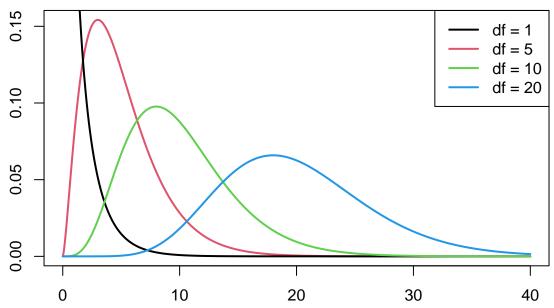
```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)</pre>
```

```
row.names(tab) <- c("Rural", "Suburban", "Urban")</pre>
colnames(tab) <- c("Grades", "Popular", "Sports")</pre>
tab
##
             Grades Popular Sports
## Rural
                 57
                          50
## Suburban
                 87
                           42
                                  22
## Urban
                 103
                           49
                                   26
chisq.test(tab)
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
```

1.9 The χ^2 -distribution

- The χ^2 -distribution with df degrees of freedom:
 - Is never negative. And $X^2 = 0$ only happens if $f_e = f_o$.
 - Has mean $\mu = df$
 - Has standard deviation $\sigma = \sqrt{2df}$
 - Is skewed to the right, but approaches a normal distribution when df grows.



1.10 Summary

- For the Chi-squared statistic, X^2 , to be appropriate we require that the expected values have to be $f_e \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

- 1. Assumptions: Two categorical variables, random sampling, $f_e \ge 5$ in all cells
- 2. Hypotheses: H_0 : Statistical independence of variables H_a : Statistical dependence of variables
- 3. Test statistic: $\chi^2 = \sum \frac{(f_o f_e)^2}{f_e}$, where $f_e = \frac{\text{(Row total)(Column total)}}{\text{Total sample size}}$
- 4. *P*-value: P = right-tail probability above observed χ^2 value, for chi-squared distribution with df = (r 1)(c 1)
- 5. Conclusion: Report *P*-value
 If decision needed, reject H_0 at α -level if $P \leq \alpha$

1.11 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_o f_e$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_e \geq 5$.
- If H_0 is true, then the standard error of $f_o f_e$ is given by

$$se = \sqrt{f_e(1 - \mathbf{row proportion})(1 - \mathbf{column proportion})}$$

• The corresponding z-score

$$z = \frac{f_o - f_e}{se}$$

should in 95% of the cells be between ± 2 . Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_e = 77.0$ and $f_o = 57$. Here column proportion = 0.517 and row proportion = 149/478 = 0.312.
- We can then calculate

$$z = \frac{57 - 77}{\sqrt{77(1 - 0.517)(1 - 0.312)}} = -3.95$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell $(f_e \text{ vs } f_o)$ comparision.

1.12 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres</pre>
```

```
## Goals
## Urban.Rural Grades Popular Sports
## Rural -3.9508449 1.3096235 3.5225004
## Suburban 1.7666608 -0.5484075 -1.6185210
## Urban 2.0865780 -0.7274327 -1.8186224
```

1.13 Cramér's V

• To measure the strength of the association, the Swedish mathematician Harald Cramér developed a measure which is estimated by

$$V = \sqrt{\frac{X^2}{n \cdot \min(r - 1, c - 1)}}$$

where r and c are the number of columns and rows in the contingency table and n is the sample size.

- Property:
 - Cramér's V lies between 0(no association) and 1(complete association)
- In the situation with the factors Goals and Urban. Rural from the dataset popularKids we get

$$V = \sqrt{\frac{X^2}{n \cdot \min(r - 1, c - 1)}} = \sqrt{\frac{18.8}{479 \cdot \min(3 - 1, 3 - 1)}} = 0.14,$$

which indicates a weak (but significant) association.

• The function CramerV in the package DescTools gives you the value and a confidence interval

library(DescTools)

```
##
## Attaching package: 'DescTools'
## The following object is masked from 'package:mosaic':
##
## MAD
CramerV(tab, conf = 0.95, type = "perc")
## Cramer V lwr.ci upr.ci
## 0.14033592 0.06014641 0.19419139
```

2 Ordinal variables

2.1 Association between ordinal variables

- For a random sample of black males the General Social Survey in 1996 asked two questions:
 - Q1: What is your yearly income (income)?
 - Q2: How satisfied are you with your job (satisfaction)?
- Both measurements are on an ordinal scale.

	VeryD	LittleD	${\bf Moderate S}$	VeryS
< 15k	1	3	10	6
15-25k	2	3	10	7
$25\text{-}40\mathrm{k}$	1	6	14	12
$> 40 \mathrm{k}$	0	1	9	11

- We might do a chi-square test to see whether Q1 and Q2 are associated, but the test does not exploit the ordinality.
- We shall consider a test that incorporates ordinality.

2.2 Gamma coefficient

- Consider a pair of respondents, where **respondent 1** is below **respondent 2** in relation to Q1.
 - If **respondent 1** is also below **respondent 2** in relation to Q2 then the pair is *concordant*.
 - If **respondent 1** is above **respondent 2** in relation to Q2 then the pair is *disconcordant*.
- Let:
 - C = the number of concordant pairs in our sample.
 - D = the number of disconcordant pairs in our sample.
- We define the estimated gamma coefficient

$$\hat{\gamma} = \frac{C - D}{C + D} = \underbrace{\frac{C}{C + D}}_{concordant\ prop.} - \underbrace{\frac{D}{C + D}}_{discordant\ prop}$$

2.3 Gamma coefficient

- Properties:
 - Gamma lies between -1 og 1
 - The sign tells whether the association is positive or negative
 - Large absolute values correspond to strong association
- The standard error $se(\hat{\gamma})$ on $\hat{\gamma}$ is complicated to calculate, so we leave that to software.
- We can now determine a 95% confidence interval:

$$\hat{\gamma} \pm 1.96 se(\hat{\gamma})$$

and if zero is contained in the interval, then there is no significant association, when we perform a test with a 5% significance level.

2.4 Example

• First, we need to install the package vcdExtra, which has the function GKgamma for calculating gamma. It also has the dataset on job satisfaction and income built-in:

```
library(vcdExtra)
JobSat
```

```
##
            satisfaction
## income
             VeryD LittleD ModerateS VeryS
##
     < 15k
                          3
                                    10
     15-25k
##
                 2
                          3
                                    10
                                            7
                                    14
##
     25-40k
                          6
                                           12
     > 40k
                          1
                                     9
                                           11
GKgamma(JobSat, level = 0.90)
```

gamma : 0.221 ## std. error : 0.117 ## CI : 0.028 0.414

• A positive association. Marginally significant at the 10% level, but not so at the 5% level.

3 Validation of data

3.1 Goodness of fit test

- You have collected a sample and want to know, whether the sample is representative for people living in Hirtshals.
- E.g. whether the distribution of gender, age, or profession in the sample do not differ significantly from the distribution in Hirtshals.
- Actually, you know how to do that for binary variables like gender, but not if you e.g. have 6 agegroups.

3.2 Example

• As an example we look at k groups, where data from Hjørring kommune tells us the distribution in Hirtshals is given by the vector

$$\pi = (\pi_1, \dots, \pi_k),$$

where π_i is the proportion which belongs to group number $i, i = 1, 2 \dots, k$ in Hirtshals.

• Consider the sample represented by the vector:

$$O=(O_1,\ldots,O_k),$$

where O_i is the observed number of individuals in group number i, i = 1, 2, ..., k.

• The total number of individuals:

$$n = \sum_{i=1}^{k} O_i.$$

• The expected number of individuals in each group, if we have a sample from Hirtshals:

$$E_i = n\pi_i, i = 1, 2, \dots, k$$

3.3 Goodness of fit test

• We will use the following measure to see how far away the observed is from the expected:

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

• If this is large we reject the hypothesis that the sample has the same distribution as Hirtshals. The reference distribution is the χ^2 with k-1 degrees of freedom.

3.4 Example

• Assume we have four groups and that the true distribution is given by:

```
k <- 4
pi_vector <- c(0.3, 0.2, 0.25, 0.25)
```

• Assume that we have the following sample:

```
0_{\text{vector}} < c(74, 72, 40, 61)
```

• Expected number of individuals in each group:

```
n <- sum(0_vector)
E_vector <- n * pi_vector
E_vector</pre>
```

[1] 0.0004378808

3.5 Test in R

```
Xsq_test <- chisq.test(0_vector, p = pi_vector)
Xsq_test

##
## Chi-squared test for given probabilities
##
## data: 0_vector
## X-squared = 18.009, df = 3, p-value = 0.0004379
• As the hypothesis is rejected, we look at the standardized residuals (z-scores):</pre>
```

Xsq_test\$stdres

```
## [1] -0.01388487 3.59500891 -3.19602486 -0.11020775
```

• We conclude that group 1 and 4 is close to true distribution in Hirtshals, but in groups 2 og 3 we have a significant mismatch.