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1 Contingency tables
1.1 A contingency table

• The dataset popularKids, we study the association between the factors Goals and Urban.Rural:

– Urban.Rural: The students were selected from urban, suburban, and rural schools.

– Goals: The students indicated whether good grades, athletic ability, or popularity was most
important to them.

• Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).
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popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.dat")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab

## Goals
## Urban.Rural Grades Popular Sports Total
## Rural 57 50 42 149
## Suburban 87 42 22 151
## Urban 103 49 26 178
## Total 247 141 90 478

1.2 A conditional distribution
• Another representation of data is the probability distribution of Goals for each level of Urban.Rural,

i.e. the sum in each row of the table is 1 (up to rounding):

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 0.383 0.336 0.282 1.000
## Suburban 0.576 0.278 0.146 1.000
## Urban 0.579 0.275 0.146 1.000
## Total 0.517 0.295 0.188 1.000

• Here we will talk about the conditional distribution of Goals given Urban.Rural.

• An important question could be:

– Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are
the rows in the table significantly different?

• There is (almost) no difference between urban and suburban, but it looks like rural is different.

1.3 Independence
• Recall, that two factors are independent, when there is no difference between the population’s

distributions of one factor given the levels of the other factor.

• Otherwise the factors are said to be dependent.

• If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals
## Urban.Rural Grades Popular Sports
## Rural 0.5 0.3 0.2
## Suburban 0.5 0.3 0.2
## Urban 0.5 0.3 0.2

• Then the factors Goals and Urban.Rural are independent.

• We take a sample and “measure” the factors F1 and F2. E.g. Goals and Urban.Rural for a random
child.

• The hypothesis of interest today is:

H0 : F1 and F2 are independent, Ha : F1 and F2 are dependent.

1.4 The Chi-squared test for independence
• Our best guess of the distribution of Goals is the relative frequencies in the sample:
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tab <- tally(~Urban.Rural + Goals, data = popKids)
n <- margin.table(tab)
pctGoals <- round(margin.table(tab, 2) / n, 3)
pctGoals

## Goals
## Grades Popular Sports
## 0.517 0.295 0.188

• If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.

• The corresponding expected counts in the sample are then:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (0.517) 44.0 (0.295) 28.1 (0.188) 149.0 (1.000)
## Suburban 78.0 (0.517) 44.5 (0.295) 28.4 (0.188) 151.0 (1.000)
## Urban 92.0 (0.517) 52.5 (0.295) 33.5 (0.188) 178.0 (1.000)
## Sum 247.0 (0.517) 141.0 (0.295) 90.0 (0.188) 478.0 (1.000)

1.5 Calculation of expected table

pctexptab

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (0.517) 44.0 (0.295) 28.1 (0.188) 149.0 (1.000)
## Suburban 78.0 (0.517) 44.5 (0.295) 28.4 (0.188) 151.0 (1.000)
## Urban 92.0 (0.517) 52.5 (0.295) 33.5 (0.188) 178.0 (1.000)
## Sum 247.0 (0.517) 141.0 (0.295) 90.0 (0.188) 478.0 (1.000)

• We note that

– The relative frequency for a given column is column total divided by table total. For example
Grades, which is 247

478 = 0.517.

– The expected value in a given cell in the table is then the cell’s relative column frequency multiplied
by the cell’s row total. For example Rural and Grades: 149 × 0.517 = 77.0.

• This can be summarized to:

– The expected value in a cell is the product of the cell’s row total and column total divided by
the table total

1.6 Chi-squared (χ2) test statistic
• We have an observed table:

tab

## Goals
## Urban.Rural Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

• And an expected table, if H0 is true:
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## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 44.0 28.1 149.0
## Suburban 78.0 44.5 28.4 151.0
## Urban 92.0 52.5 33.5 178.0
## Sum 247.0 141.0 90.0 478.0

• If these tables are “far from each other”, then we reject H0. We want to measure the distance via the
Chi-squared test statistic:

– X2 =
∑ (fo−fe)2

fe
: Sum over all cells in the table

– fo is the frequency in a cell in the observed table

– fe is the corresponding frequency in the expected table.

• We have:
X2

obs = (57 − 77)2

77 + . . . + (26 − 33.5)2

33.5 = 18.8

• Is this a large distance??

1.7 χ2-test template.
• We want to test the hypothesis H0 of independence in a table with r rows and c columns:

– We take a sample and calculate X2
obs - the observed value of the test statistic.

– p-value: Assume H0 is true. What is then the chance of obtaining a larger X2 than X2
obs, if we

repeat the experiment?

• This can be approximated by the χ2-distribution with df = (r − 1)(c − 1) degrees of freedom.

• For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and X2
obs = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)
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## [1] 0.0008603303

• There is clearly a significant association between Goals and Urban.Rural.

1.8 The function chisq.test

• All of the above calculations can be obtained by the function chisq.test.
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
testStat$expected

## Goals
## Urban.Rural Grades Popular Sports
## Rural 76.99372 43.95188 28.05439
## Suburban 78.02720 44.54184 28.43096
## Urban 91.97908 52.50628 33.51464

• The frequency data can also be put directly into a matrix.
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)

5



row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab

## Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26
chisq.test(tab)

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497

1.9 The χ2-distribution
• The χ2-distribution with df degrees of freedom:

– Is never negative. And X2 = 0 only happens if fe = fo.

– Has mean µ = df

– Has standard deviation σ =
√

2df

– Is skewed to the right, but approaches a normal distribution when df grows.
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1.10 Summary
• For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be

fe ≥ 5.

• Now we can summarize the ingredients in the Chi-squared test for independence.
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1.11 Residual analysis
• If we reject the hypothesis of independence it can be of interest to identify the significant deviations.

• In a given cell in the table, fo − fe is the deviation between data and the expected values under the
null hypothesis.

• We assume that fe ≥ 5.

• If H0 is true, then the standard error of fo − fe is given by

se =
√

fe(1 − row proportion)(1 − column proportion)

• The corresponding z-score
z = fo − fe

se

should in 95% of the cells be between ±2. Values above 3 or below -3 should not appear.

• In popKids table cell Rural and Grade we got fe = 77.0 and fo = 57. Here column proportion
= 0.517 and row proportion = 149/478 = 0.312.

• We can then calculate
z = 57 − 77√

77(1 − 0.517)(1 − 0.312)
= −3.95

• Compared to the null hypothesis there are way too few rural kids who find grades important.

• In summary: The standardized residuals allow for cell-by-cell (fe vs fo) comparision.

1.12 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres

## Goals
## Urban.Rural Grades Popular Sports
## Rural -3.9508449 1.3096235 3.5225004
## Suburban 1.7666608 -0.5484075 -1.6185210
## Urban 2.0865780 -0.7274327 -1.8186224
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1.13 Cramér’s V
• To measure the strength of the association, the Swedish mathematician Harald Cramér developed a

measure which is estimated by

V =

√
X2

n · min(r − 1, c − 1)

where r and c are the number of columns and rows in the contingency table and n is the sample size.

• Property:

– Cramér’s V lies between 0(no association) and 1(complete association)

• In the situation with the factors Goals and Urban.Rural from the dataset popularKids we get

V =

√
X2

n · min(r − 1, c − 1) =

√
18.8

479 · min(3 − 1, 3 − 1) = 0.14,

which indicates a weak (but significant) association.

• The function CramerV in the package DescTools gives you the value and a confidence interval
library(DescTools)

##
## Attaching package: 'DescTools'

## The following object is masked from 'package:mosaic':
##
## MAD
CramerV(tab, conf = 0.95, type = "perc")

## Cramer V lwr.ci upr.ci
## 0.14033592 0.06014641 0.19419139

2 Ordinal variables
2.1 Association between ordinal variables

• For a random sample of black males the General Social Survey in 1996 asked two questions:

– Q1: What is your yearly income (income)?

– Q2: How satisfied are you with your job (satisfaction)?

• Both measurements are on an ordinal scale.

VeryD LittleD ModerateS VeryS
< 15k 1 3 10 6
15-25k 2 3 10 7
25-40k 1 6 14 12
> 40k 0 1 9 11

• We might do a chi-square test to see whether Q1 and Q2 are associated, but the test does not exploit
the ordinality.

• We shall consider a test that incorporates ordinality.
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2.2 Gamma coefficient
• Consider a pair of respondents, where respondent 1 is below respondent 2 in relation to Q1.

– If respondent 1 is also below respondent 2 in relation to Q2 then the pair is concordant.

– If respondent 1 is above respondent 2 in relation to Q2 then the pair is disconcordant.

• Let:

C = the number of concordant pairs in our sample.

D = the number of disconcordant pairs in our sample.

• We define the estimated gamma coefficient

γ̂ = C − D

C + D
= C

C + D︸ ︷︷ ︸
concordant prop.

− D

C + D︸ ︷︷ ︸
discordant prop.

2.3 Gamma coefficient
• Properties:

– Gamma lies between -1 og 1

– The sign tells whether the association is positive or negative

– Large absolute values correspond to strong association

• The standard error se(γ̂) on γ̂ is complicated to calculate, so we leave that to software.

• We can now determine a 95% confidence interval:

γ̂ ± 1.96se(γ̂)

and if zero is contained in the interval, then there is no significant association, when we perform a test
with a 5% significance level.

2.4 Example
• First, we need to install the package vcdExtra, which has the function GKgamma for calculating gamma.

It also has the dataset on job satisfaction and income built-in:
library(vcdExtra)
JobSat

## satisfaction
## income VeryD LittleD ModerateS VeryS
## < 15k 1 3 10 6
## 15-25k 2 3 10 7
## 25-40k 1 6 14 12
## > 40k 0 1 9 11
GKgamma(JobSat, level = 0.90)

## gamma : 0.221
## std. error : 0.117
## CI : 0.028 0.414

• A positive association. Marginally significant at the 10% level, but not so at the 5% level.
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3 Validation of data
3.1 Goodness of fit test

• You have collected a sample and want to know, whether the sample is representative for people living
in Hirtshals.

• E.g. whether the distribution of gender, age, or profession in the sample do not differ significantly from
the distribution in Hirtshals.

• Actually, you know how to do that for binary variables like gender, but not if you e.g. have 6 agegroups.

3.2 Example
• As an example we look at k groups, where data from Hjørring kommune tells us the distribution in

Hirtshals is given by the vector
π = (π1, . . . , πk),

where πi is the proportion which belongs to group number i, i = 1, 2 . . . , k in Hirtshals.

• Consider the sample represented by the vector:

O = (O1, . . . , Ok),

where Oi is the observed number of individuals in group number i, i = 1, 2, . . . , k.

• The total number of individuals:

n =
k∑

i=1
Oi.

• The expected number of individuals in each group, if we have a sample from Hirtshals:

Ei = nπi, i = 1, 2, . . . , k

3.3 Goodness of fit test
• We will use the following measure to see how far away the observed is from the expected:

X2 =
k∑

i=1

(Oi − Ei)2

Ei

• If this is large we reject the hypothesis that the sample has the same distribution as Hirtshals. The
reference distribution is the χ2 with k − 1 degrees of freedom.

3.4 Example
• Assume we have four groups and that the true distribution is given by:

k <- 4
pi_vector <- c(0.3, 0.2, 0.25, 0.25)

• Assume that we have the following sample:
O_vector <- c(74, 72, 40, 61)

• Expected number of individuals in each group:
n <- sum(O_vector)
E_vector <- n * pi_vector
E_vector
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## [1] 74.10 49.40 61.75 61.75

• X2 statistic:
Xsq = sum((O_vector - E_vector)ˆ2 / E_vector)
Xsq

## [1] 18.00945

• p-value:
p_value <- 1 - pchisq(Xsq, df = k-1)
p_value

## [1] 0.0004378808

3.5 Test in R

Xsq_test <- chisq.test(O_vector, p = pi_vector)
Xsq_test

##
## Chi-squared test for given probabilities
##
## data: O_vector
## X-squared = 18.009, df = 3, p-value = 0.0004379

• As the hypothesis is rejected, we look at the standardized residuals (z-scores):
Xsq_test$stdres

## [1] -0.01388487 3.59500891 -3.19602486 -0.11020775

• We conclude that group 1 and 4 is close to true distribution in Hirtshals, but in groups 2 og 3 we have
a significant mismatch.
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