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1 Introduction to probability

1.1 Events
• Consider an experiment.

• The sample space S is the set of all possible outcomes.

– Example: We roll a die. The possible outcomes are S = {1, 2, 3, 4, 5, 6}.

– Example: We measure wind speed (in m/s). The sample space is [0, ∞).

• An event is a subset A ⊆ S of the sample space.

– Example: Rolling a die and getting an even number is the event A = {2, 4, 6}.

– Example: Measuring a wind speed of at least 5m/s is the event [5, ∞).
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1.2 Combining events
• Consider two events A and B.

– The union A ∪ B is the event that either A or B occurs.

– The intersection A ∩ B of is the event that both A and B occurs.

A BA B

• The complement Ac of A of is the event that A does not occur.
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• Example: We roll a die and consider the events A = {2, 4, 6} that we get an even number and
B = {4, 5, 6} that we get at least 4. Then

– A ∪ B = {2, 4, 5, 6}

– A ∩ B = {4, 6}

– Ac = {1, 3, 5}

1.3 Probability of event
• The probability of an event is the proportion of times the event A would occur when the experiment

is repeated many times.

• The probability of the event A is denoted P (A).

– Example: We throw a coin and consider the outcome A = {Head}. We expect to see the outcome
{Head} half of the time, so P (Head) = 1

2 .

– Example: We throw a die and consider the outcome A = {4}. Then P (4) = 1
6 .

• Properties:

1. P (S) = 1

2. P (∅) = 0

3. 0 ≤ P (A) ≤ 1 for all events A

1.4 Probability of mutually exclusive events
• Consider two events A and B.

• If A and B are mutually exclusive (never occur at the same time, i.e. A ∩ B = ∅), then

5



P (A ∪ B) = P (A) + P (B).

A BA B

• Example: We roll a die and consider the events A = {1} and B = {2}. Then

P (A ∪ B) = P (A) + P (B) = 1
6 + 1

6 = 1
3 .

1.5 Probability of union
• For general events A an B,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

A BA B

• Example: We roll a die and consider the events A = {1, 2} and B = {2, 3}. Then A ∩ B = {2}, so

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 1
3 + 1

3 − 1
6 = 1

2 .

1.6 Probability of complement
• Since A and Ac are mutually exclusive with A ∪ Ac = S, we get

1 = P (S) = P (A ∪ Ac) = P (A) + P (Ac),

so
P (Ac) = 1 − P (A).
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1.7 Conditional probability
• Consider events A and B.

• The conditional probability of A given B is defined by

P (A|B) = P (A ∩ B)
P (B)

if P (B) > 0.

A BA B

• Example: We toss a coin two times. The possible outcomes are S = {HH, HT, TH, TT}. Each
outcome has probability 1

4 . What is the probability of at least one head if we know there was at least
one tail?

– Let A = {at least one H} and B = {at least one T}. Then

P (A|B) = P (A ∩ B)
P (B) = 2/4

3/4 = 2
3 .

1.8 Independent events
• Two events A and B are said to be independent if

P (A|B) = P (A).

– Example: Consider again a coin tossed two times with possible outcomes HH, HT, TH, TT .

∗ Let A = {at least one H} and B = {at least one T}.

∗ We found that P (A|B) = 2
3 while P (A) = 3

4 , so A and B are not independent.

1.9 Independent events - equivalent definition
• Two events A and B are independent if and only if

P (A ∩ B) = P (A)P (B).

• Proof: A and B are independent if and only if

P (A) = P (A|B) = P (A ∩ B)
P (B) .

Multiplying by P (B) we get P (A)P (B) = P (A ∩ B).
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– Example: Roll a die and let A = {2, 4, 6} be the event that we get an even number and B = {1, 2}
the event that we get at most 2. Then,

∗ P (A ∩ B) = P (2) = 1
6

∗ P (A)P (B) = 1
2 · 1

3 = 1
6 .

∗ So A and B are independent.

2 Stochastic variables

2.1 Definition of stochastic variables
• A stochastic variable is a function that assigns a real number to every element of the sample space.

– Example: Throw a coin three times. The possible outcomes are

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

∗ The random variable X assigns to each outcome the number of heads, e.g.

X(HHH) = 3, X(HTT ) = 1.

– Example: Consider the question whether a certain machine is defect. Define

∗ X = 0 if the machine is not defect,
∗ X = 1 if the machine is defect.

– Example: X is the temperature in the lecture room.

2.2 Discrete or continuous stochastic variables
• A stochastic variable X may be

• Discrete: X can take a finite or infinite list of values.

– Examples:

∗ Number of heads in 3 coin tosses (can take values 0, 1, 2, 3)

∗ Number of machines that break down over a year (can take values 0, 1, 2, 3, . . .)

• Continuous: X takes values on a continuous scale.

– Examples:

∗ Temperature, speed, voltage,. . .

3 Discrete random variables

3.1 Discrete random variables
• Let X be a discrete stochastic variable which can take the values x1, x2, . . .

• The distribution of X is given by the probability function, which is given by

f(xi) = P (X = xi), i = 1, 2, . . .

8



– Example: We throw a coin three times and let X be the number of heads. The possible outcomes
are

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

The probability function is

∗ f(0) = P (X = 0) = 1
8

∗ f(1) = P (X = 1) = 3
8

∗ f(2) = P (X = 2) = 3
8

∗ f(3) = P (X = 3) = 1
8

0 1 2 3
0

0.125

0.25

0.375

3.2 The distribution function
• Let X be a discrete random variable with probability function f . The distribution function of X is

given by
F (x) = P (X ≤ x) =

∑
xi≤x

f(xi), x ∈ R.

– Example: For the three coin tosses, we have

∗ F (0) = P (X ≤ 0) = 1
8

∗ F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1) = 1
2

∗ F (2) = P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2) = 7
8

∗ F (3) = P (X ≤ 3) = 1
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• For a discrete variable, the result is an increasing step function.

3.3 Mean of a discrete variable
• The mean or expected value of a discrete random variable X with values x1, x2, . . . and probability

function f(xi) is
µ = E(X) =

∑
i

xiP (X = xi) =
∑

i

xif(xi).

• Interpretation: A weighted average of the possible values of X, where each value is weighted by its
probability. A sort of “center” value for the distribution.

– Example: Toss a coin 3 times. What are the expected number of heads?

E(X) = 0 ·P (X = 0)+1 ·P (X = 1)+2 ·P (X = 2)+3 ·P (X = 3) = 0 · 1
8 +1 · 3

8 +2 · 3
8 +3 · 1

8 = 1.5.

3.4 Variance of a discrete variable
• The variance is the mean squared distance between the values of the variable and the mean value.

More precisely,
σ2 =

∑
i

(xi − µ)2P (X = xi) =
∑

i

(xi − µ)2f(xi).

• A high variance indicates that the values of X have a high probability of being far from the mean
values.

• The standard deviation is the square root of the variance

σ =
√

σ2.

• The advantage of the standard deviation over the variance is that it is measured in the same units as X.

– Example Let X be the number of heads in 3 coin tosses. What is the variance and standard
deviation?

∗ Solution: The mean was found to be 1.5. Thus,

σ2 = (0−1.5)2·f(0)+(1−1.5)2·f(1)+(2−1.5)2·f(2)+(3−1.5)2·f(3) = (0−1.5)2· 1
8 +(1−1.5)2· 3

8 +(2−1.5)2· 3
8 +(3−1.5)2· 1

8 = 0.75.

The standard deviation is σ =
√

0.75 ≈ 0.866.
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4 Continuous random variables

4.1 Distribution of continuous random variables
• The distribution of a continuous random variable X is given by a probability density function f ,

which is a function satisfying

1. f(x) is defined for all x in R,

2. f(x) ≥ 0 for all x in R,

3.
∫∞

−∞ f(x)dx = 1.

• The probability that X lies between the values a and b is given by

P (a < X < b) =
∫ b

a

f(x)dx.

x

dn
or

m
(x

)

a b
• Notes:

– Condition 3. ensures that P (−∞ < X < ∞) = 1.

– The probability of X assuming a specific value a is zero, i.e. P (X = a) = 0.

4.2 Example: The uniform distribution
• The uniform distribution on the interval (A, B) has density

f(x) =
{

1
B−A A ≤ x ≤ B

0 otherwise

11



A B

0

1
B − A

– Example: If X has a uniform distribution on (0, 1), find P ( 1
3 < X ≤ 2

3 ).

∗ Solution:

P
( 1

3 < X ≤ 2
3
)

= P
( 1

3 < X < 2
3
)

+ P
(
X = 2

3
)

=
∫ 2/3

1/3
f(x)dx + 0 =

∫ 2/3

1/3
1dx = 1

3 .

4.3 Density shapes
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Left skew density

4.4 Distribution function of continuous variable
• Let X be a continuous random variable with probability density f . The distribution function of X

is given by
F (x) = P (X ≤ x) =

∫ x

−∞
f(y)dy, x ∈ R.
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– Example: For the uniform distribution on [0, 1], the density was

f(x) =
{

1, 0 ≤ x ≤ 1,

0, otherwise.
Hence,

F (x) = P (X ≤ x) =
∫ x

−∞
f(y)dy =

∫ x

0
1dy = x, x ∈ [0, 1].

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4.5 Mean and variance of a continuous variable
• The mean or expected value of a continuous random variable X is

µ = E(X) =
∫ ∞

−∞
xf(x)dx.

• The variance is given by
σ2 =

∫ ∞

−∞
(x − µ)2f(x)dx.

– In calculations, it is often more convenient to use the formula

σ2 = E(X2) − E(X)2 =
∫ ∞

−∞
x2f(x)dx − µ2.

4.5.1 Example: Mean and variance in the uniform distribution

• Consider again the uniform distribution on the interval (0, 1) with density

f(x) =
{

1 0 ≤ x ≤ 1
0 otherwise

Find the mean and variance.

• Solution: The mean is

µ = E(X) =
∫ ∞

−∞
xf(x)dx =

∫ 1

0
x · 1dx =

[ 1
2 x2]1

0 = 1
2 ,

and the variance is computed using the formula

σ2 = E(X2) − E(X)2 =
∫ ∞

−∞
x2f(x)dx − µ2 =

∫ 1

0
x2dx − µ2 =

[ 1
3 x3]1

0 −
(

1
2

)2
= 1

3 − 1
4 = 1

12 .
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4.6 Rules for computing mean and variance
• Let X be a random variable and a, b be constants. Then,

1. E(aX + b) = aE(X) + b .
2. Var(aX + b) = a2Var(X).

– Example: If X has mean µ and variance σ2, then

∗ E
(

X−µ
σ

)
= 1

σ E(X − µ) = 1
σ (E(X) − µ) = 0,

∗ Var
(

X−µ
σ

)
= 1

σ2 Var(X − µ) = 1
σ2 Var(X) = 1

σ2 σ2 = 1.
∗ So X−µ

σ is a standardization of X that has mean 0 and variance 1.

5 Two random variables

5.1 Joint distribution of two discrete variables
• Let X and Y be two discrete random variables. The joint distribution of X and Y is given by their

joint probability function

f(x, y) = P (X = x, Y = y).
• We find the probability of (X, Y ) ∈ A by summing probabilities:

P ((X, Y ) ∈ A) =
∑

(x,y)∈A

f(x, y).

• Example: We roll two dies and let X be the outcome of die 1 and Y be the outcome of die 2. Since
all 36 combinations are equally likely,

f(x, y) = P (X = x, Y = y) = 1
36 , x, y = 1, 2, . . . , 6.

We can now compute:

P (X + Y = 4) = f(1, 3) + f(2, 2) + f(3, 1) = 1
36 + 1

36 + 1
36 = 1

12 .

5.2 Marginal distributions and independence
• Let (X, Y ) be a pair of discrete variables with joint probability function f(x, y). The marginal

probability function for X is found by

f(x) = P (X = x) =
∑

y

P (X = x, Y = y) =
∑

y

f(x, y).

• Similarly, the marginal probability function for Y is

g(y) =
∑

x

f(x, y).

• We say that X and Y are independent if

f(x, y) = f(x)g(y).

14



• Note: Recalling the definition of the probability function, the independence condition says that

f(x, y) = P (X = x, Y = y) = P (X = x) · P (Y = y) = f(x)g(y),

which corresponds to independence of the events {X = x} and {Y = y}.

• Example: We roll two dice and let X and Y be the outcome of die 1 and die 2, respectively. We found
earlier that f(x, y) = 1

36 for x, y = 1, 2, . . . , 6. From this we can find the marginal distribution of X

f(x) =
6∑

y=1
f(x, y) = 1

36 + 1
36 + 1

36 + 1
36 + 1

36 + 1
36 = 1

6 , x = 1, 2, . . . , 6,

as we would expect. Similarly, the marginal distribution of Y is g(y) = 1
6 , y = 1, 2, . . . , 6. We can

now check that the two dice are statistically independent:

f(x, y) = 1
36 = 1

6 · 1
6 = f(x)g(y).

5.3 Joint distribution of two continuous variables
• Let X and Y be two continuous random variables. The joint distribution of X and Y is given by

their joint density function f(x, y).

• To find the probability of (X, Y ) ∈ A we integrate over A:

P ((X, Y ) ∈ A) =
∫∫

A

f(x, y)dxdy.

• Example: Suppose that (X, Y ) have the joint density

f(x, y) =
{

1, 0 ≤ x, y ≤ 1
0, otherwise.

Suppose we want to find the probability P (X + Y ≤ 1). This means (X, Y ) should belong to the set
A = {(x, y) : x + y ≤ 1}. Thus,

P (X + Y ≤ 1) =
∫∫

A

f(x, y)dxdy =
∫ 1

0

∫ 1−x

0
1dydx =

∫ 1

0
[y]1−x

0 =
∫ 1

0
(1 − x)dx = [− 1

2 (1 − x)2]10 = 1
2 .

0 1

0
1

15



5.4 Marginal distributions and independence
• Let (X, Y ) be a pair of continuous variables with joint density function f(x, y). Then the marginal

density functions for X and Y are found by the formula

f(x) =
∫ ∞

−∞
f(x, y)dy, g(y) =

∫ ∞

−∞
f(x, y)dx.

• We say that X and Y are independent if

f(x, y) = f(x)g(y).

5.5 Covariance
• For two random variables, the dependence between them can be measured by the covariance between

them. This is given by

σXY = E((X−µX)(Y −µY )) =
∑
(x,y)

(x−µX)(y−µY )f(x, y), σXY = E((X−µX)(Y −µY )) =
∫ ∞

−∞

∫ ∞

−∞
(x−µX)(y−µY )f(x, y)dxdy,

in the discrete and continuous case, respectively.

• Properties:

– σXY > 0 indicates that the values of X tend to be large when Y is large and X tends to be small
when Y is small.

– σXY < 0 indicates that the values of X tend to be large when Y is small and small when Y is
large.

– If X and Y are statistically independent, then σXY = 0.

– If σXY = 0 it is not guaranteed that X and Y are independent!

• Apart from this, the values of σXY are hard to interpret since they depend on the units that X and Y
are measured in.

5.6 Correlation
• To obtain a unit free version of the covariance, we define the correlation coefficient

ρXY = σXY

σXσY
.

This can be thought of as the covariance when X and Y are measured in standard deviation units.

• Properties:

– −1 ≤ ρXY ≤ 1.

– ρXY = 1 means one of the variables is linearly determined by the other, say Y = a + bX, where
the slope b > 0.

– ρXY = −1 means one of the variables is linearly determined by the other, say Y = a + bX, where
the slope b < 0.

– If X and Y are independent, then ρXY = 0. Again, one cannot conclude that X and Y are
independent if ρXY = 0.

• More on correlation in Module 3.

16



6 Important distributions

6.1 The binomial distribution
• The binomial distribution: An experiment with two possible outcomes (success/failure) is repeated

n times, each independent of each other and with probability p of success.

• Let X be the number of successes. Then X can take the values 0, 1, . . . , n.

• X follows a binomial distribution, denoted X ∼ binom(n, p) (or Bin(n, p)).

– Example: Flip a coin n times. In each flip, the probability of head is p = 1
2 . Let X be the number

of heads. Then X ∼ binom(n, 1/2)

– Example: We buy n items of the same type. Each has probability p of being defect. Let X be
the number of defect items. Then X ∼ binom(n, p)

Probability function for binomial distribution,
(

n
x

)
is the binomial coefficient:

P (X = x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n

Graph of probability functions for binomial distributions with n = 10:
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7 The normal distribution

7.1 Definition of the normal distribution
• The normal distribution is a continuous distribution with probability density function

n(x; µ, σ) = 1
σ

√
2π

e− (x−µ)2

2σ2 .
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• It depends on two parameters:

– The mean µ

– The standard deviation σ

• When a random variable Y follows a normal distribution with mean µ and standard deviation σ, we
write Y ∼ norm(µ, σ).

7.2 The normal distribution - interpretation of parameters
• The probability density function of a normal distribution is a symmetric bell-shaped curve centered

around µ.

Density of the normal distribution

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

68%

95%
99.7%

mean µ and standard deviation σ
• Interpretation of standard deviation:

– ≈ 68% of the population is within 1 standard deviation of the mean.
– ≈ 95% of the population is within 2 standard deviations of the mean.
– ≈ 99.7% of the population is within 3 standard deviations of the mean.

7.3 Normal z-scores
• The normal distribution with mean µ = 0 and standard deviation σ = 1 is called the standard normal

distribution.

• If Y ∼ norm(µ, σ) then the corresponding z-score is

Z = Y − µ

σ

• Interpretation: Z is the number of standard deviations that Y is away from the mean, where a negative
value tells that we are below the mean.

• We have that Z ∼ norm(0, 1), i.e. Z follows a standard normal distribution.

• This implies that

18



– Z lies between −1 and 1 with probability 68%
– Z lies between −2 and 2 with probability 95%
– Z lies between −3 and 3 with probability 99.7%

• It also implies that:

– The probability of Y being between µ − zσ and µ + zσ is equal to the probability of Z being
between −z and z.

7.4 Probabilities in a normal distribution
• To find the probabilities P (a < X < b) in a normal distribution, we need to find the area under the

density curve:

a b
• This is given by

P (a < X < b) =
∫ b

a

1
σ

√
2π

e− (x−µ)2

2σ2 dx.

• This integral cannot be computed by hand!

7.5 Getting started with R
• To calculate normal probabilities in R we use the mosaic package.

• The first time you use the mosaic package, you need to install it first. This is done via the command:
install.packages("mosaic")

• At the beginning of each new R session you need to load it through the library command:
library(mosaic)
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• This loads the mosaic package which has a lot of convenient functions for this course (we will get back
to that later). It also prints a lot of info about functions that have been changed by the mosaic package,
but you can safely ignore that.

7.6 Computing probabilities in a normal distribution
• To find the probability P (X ≤ q) when X ∼ norm(µ, σ), we use the pdist function in R.

• For instance with q = 1, µ = 0 and σ = 1, we type
# For a standard normal distribution the probability of getting a value less than 1 is:
pdist("norm", q = 1, mean = 0, sd = 1)

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:0.841

B:0.159

## [1] 0.84

• The output is always the probability of being to the left of q, which is marked as the purple area.

• To get the probability of being to the right of q, we compute

P (X > q) = 1 − P (X ≤ q) = 1 − 0.8413447 = 0.1586553.

• We can also get the probability of an observation lying between −1 and 1 by

P (−1 ≤ X ≤ 1) = 1 − P (X > 1) − P (X < −1) = 1 − 2 · 0.1587 = 0.683,

where we used that by symmetry of the normal curve, P (X > 1) = P (X < −1).
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−1 1

7.7 Calculating z-values in the standard normal distribution
• We can also go in the other direction using qdist: Given a probability p, find the value z such that

P (X ≤ z) = p when X ∼ norm(µ, σ).

• For instance with p = 0.005, µ = 0 and σ = 1:
qdist("norm", p = 0.005, mean = 0, sd = 1, xlim = c(-4, 4))
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0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:0.005

B:0.995

## [1] -2.6

• Sometimes we want to find z such that P (X > z) = p. Since this is the same as P (X ≤ z) = 1 − p, we
may do as follows:

qdist("norm", p = 1-0.005, mean = 0, sd = 1, xlim = c(-4, 4))
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0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:0.995

B:0.005

## [1] 2.6

• Thus, the probability of an observation between −2.576 and 2.576 equals 1 − 2 · 0.005 = 99%.

−2.576 2.576

8 Sampling
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8.1 Population and sample
• In statistics, the word population refers to the collection of all the objects we are interested in.

• Examples:

– The Danish population

– All possible outcomes of a lab experiment

• A sample consists of finitely many elements selected randomly and independently of each other from
the population.

• Examples:

– People selected for an opinion poll

– The experiments we actually carried out

Population

Sample

Population

Sample

8.2 Sampling principles
• If we draw a random element from the population, the result will be a random variable X with a certain

distribution.

• When we sample, we draw n elements from the population independently of each other. This results in
n independent random variables X1, . . . , Xn, each having the same distribution as X.

• Sampling principles:

– Independence: If you make experiments in the lab, reusing parts of an experiment for the next
one might cause dependence between outcomes. If you measure the same quantity at a sequence
of time points, measurements close in time are typically not independent.

– Same distribution as the population: If we only go out and make weather measurements when
the weather is good, our sample does not have the same distribution as measurements from any
randomly selected day.
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• Note: We use capital letters X1, . . . , Xn to indicate that the elements of the sample are random and
small letters x1, . . . , xn to denote the values that are actually observed in the experiment. These values
are called observations.

8.3 Statistical inference
• Statistical inference means drawing conclusions about the population based on the sample.

• Typically, we want to draw conclusions about some parameters of the population, e.g. mean µ and
standard deviation σ.

• Note: The number of elements n in the sample is called the sample size. In general: the larger n, the
more precise conclusions we can draw about the population.

8.4 Sample proportion
• Consider an experiment with two possible outcomes, e.g. flipping a coin or testing whether a component

is defect or not.

• Call the two outcomes 0 and 1. We are interested in the probability p of getting the outcome 1.

• Given a sample X1, . . . , Xn, we estimate p by

P̂ = number of 1’s among X1, . . . , Xn

n
=
∑n

i=1 Xi

n
.

• P̂ is a so-called summary statistics, i.e. a function of the sample.

• Since P̂ is a function of the random sample X1, . . . , Xn, P̂ is itself a random variable. Different samples
may lead to different values of P̂ .

• E(P̂ ) = p.

• limn→∞ P̂ = p.

8.5 A real experiment
• John Kerrich, a South African mathematician, was visiting Copenhagen when World War II broke out.

Two days before he was scheduled to fly to England, the Germans invaded Denmark. Kerrich spent the
rest of the war interned at a camp in Hald Ege near Viborg, Jutland. To pass the time he carried out a
series of experiments in probability theory. In one, he tossed a coin 10,000 times.

• The first 25 observations were (0 = tail, 1 = head):

0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, . . .

• Plot of the empirical probability p̂ of getting a head against the number of tosses n:
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8.6 Sample mean
• Suppose we are interested in the mean value µ of a population and we have drawn a random sample

X1, . . . , Xn.

• Based on the sample we estimate µ by the sample mean, which is the average of all the elements

X̄ = 1
n

n∑
i=1

Xi.

• Properties:

– X̄ is random, as it depends on the random sample X1, . . . , Xn. Different samples might result in
different values of X̄.

– E(X̄) = µ.

– X̄ has standard deviation σ√
n

, where σ is the population standard deviation. Note that increasing
n decreases σ√

n
.

– To distinguish between the standard deviation of the population and the standard deviation of X̄,
we call the standard deviation of X̄ the standard error.

– limn→∞ X̄ = µ.
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8.7 Central limit theorem
• When the population distribution is a normal distribution norm(µ, σ), then

X̄ ∼ norm
(

µ,
σ√
n

)
.

• For any population distribution, the central limit theorem states:

– When n goes to ∞, the distribution of X̄ approaches a normal distribution with mean µ and
standard deviation σ√

n
. Thus, for large n,

X̄ ≈ norm
(

µ,
σ√
n

)
.

– The corresponding z-score Z = X̄−µ
σ/

√
n

follows a standard normal distribution norm(0, 1).

• As a rule of thumb, n is large enough when n ≥ 30.

8.8 Illustration of CLT
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• The top row shows 4 different population distributions. The plots below show the distribution of X̄
when n = 2, 5, and 30.
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8.8.1 Example: use of CLT

• A company produces cylindrical components for automobiles. It is important that the mean component
diameter is µ = 5mm. The standard deviation is σ = 0.1mm.

• An engineer takes a random sample of n = 100 components. These have an average diameter of
x̄ = 5.027. Is it reasonable to think µ = 5?

• If the population of components has the correct mean, then

X̄ ≈ norm
(

µ,
σ√
n

)
= norm

(
5,

0.1√
100

)
= norm(5, 0.01).

• For the actual sample this gives the observed z-score

zobs = x̄ − 5
0.01 = 2.7

which should come from an approximate standard normal distribution.
• The probability of getting a higher z-score is:

1 - pdist("norm", mean = 0, sd = 1, q = 2.7, xlim = c(-4, 4))

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:0.997

B:0.003

## [1] 0.0035

• Thus, it is highly unlikely that a random sample has such a high z-score. A better explanation might
be that the produced components have a population mean larger than 5mm.

8.9 Sample variance and standard deviation
• Suppose we are interested in the variance σ2 of a population and we have drawn a random sample

X1, . . . , Xn.
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• Based on the sample we estimate the population variance σ2 by the sample variance, which is

S2 = 1
n − 1

n∑
i=1

(Xi − X̄)2.

• We estimate the population standard deviation σ by the sample standard deviation

S =
√

S2.

• Properties:

– S2 is again a random variable.

– E(S2) = σ2.

8.10 z-scores for the sample mean
• According to the central limit theorem X̄ ≈ norm(µ, σ√

n
) when the population follows a normal

distribution or n is large.

• The corresponding z-score Z = X̄−µ
σ/

√
n

follows a standard normal distribution norm(0, 1).

• Problem: We don’t know σ.

• We may insert the sample standard deviation to get the t-score

T = X̄−µ
S/

√
n

.

• Since S is random with a certain variance, this causes T to vary more than Z.

• As a consequence, T no longer follows a normal distribution, but a t-distribution with n − 1 degrees
of freedom.

8.11 t-distribution and t-score
• The t-distribution is very similar to the standard normal distribution:

– it is symmetric around zero and bell shaped, but

– it has “heavier” tails and thereby
– a slightly larger standard deviation than the standard normal distribution.
– Further, the t-distribution’s standard deviation decays as a function of its degrees of freedom,

which we denote df ,
– and when df grows, the t-distribution approaches the standard normal distribution.

The expression of the density function is of slightly complicated form and will not be stated here, instead the
t-distribution is plotted below for df = 1, 2, 10 and ∞.
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9 Introduction to R

9.1 Rstudio
• Make a folder on your computer where you want to keep files to use in Rstudio. Do NOT use

Danish characters æ, ø, å in the folder name (or anywhere in the path to the folder).
• Set the working directory to this folder: Session -> Set Working Directory -> Choose Directory

(shortcut: Ctrl+Shift+H).
• Make the change permanent by setting the default directory in: Tools -> Global Options -> Choose

Directory.

9.2 R basics
• Ordinary calculations:

4.6 * (2 + 3)ˆ4

## [1] 2875

• Make a (scalar) object and print it:
a <- 4
a

## [1] 4

• Make a (vector) object and print it:
b <- c(2, 5, 7)
b

## [1] 2 5 7

• Make a sequence of numbers and print it:
s <- 1:4
s

## [1] 1 2 3 4

• Note: A more flexible command for sequences:
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s <- seq(1, 4, by = 1)

• R does elementwise calculations:
a * b

## [1] 8 20 28
a + b

## [1] 6 9 11
b ˆ 2

## [1] 4 25 49

• Sum and product of elements:
sum(b)

## [1] 14
prod(b)

## [1] 70

9.3 R markdown
• The slides and all exercises in R (including the exam questions) are made in the special Rmarkdown

format.

• This allows you to combine text and R code.

• You can write formulas using standard LaTeX commands.

9.4 R extensions
• The functionality of R can be extended through libraries or packages (much like plugins in browsers

etc.). Some are installed by default in R and you just need to load them.
• To install a new package in Rstudio use the menu: Tools -> Install Packages
• You need to know the name of the package you want to install. You can also do it through a command:

install.packages("mosaic")

• When it is installed you can load it through the library command:
library(mosaic)

• This loads the mosaic package which has a lot of convenient functions for this course (we will get back
to that later). It also prints a lot of info about functions that have been changed by the mosaic package,
but you can safely ignore that.

9.5 R help
• You get help via ?<command>:

?sum
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• Use tab to make Rstudio guess what you have started typing.
• Search for help:

help.search("plot")

• You can find a cheat sheet with the R functions we use for this course here.
• Save your commands in a file for later usage:

– Select history tab in top right pane in Rstudio .
– Mark the commands you want to save.
– Press To Source button.

10 Data in R

10.1 Data example
• Now we will have a look at a data set concerning the 1988 vote in Chile for or against Pinochet to

continue as leader. The sample consists of 2700 voters randomly selected from the Chilenean population.

• The data set contains the variables:

– region: The region in Chile where the voter lives
– population: Population of the region.
– sex: The gender of the voter.
– age: The age of the voter.
– education: Education level of the voter.
– income: Monthly income of the voter.
– statusquo: To which degree the voter supports the status quo.
– vote: Should Pinochet continue? Y = yes, N= no, U=undecided, A= will abstain from voting.

• More information about the data set may be found here.
Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
head(Chile)

## region population sex age education income statusquo vote
## 1 N 175000 M 65 P 35000 1.0 Y
## 2 N 175000 M 29 PS 7500 -1.3 N
## 3 N 175000 F 38 P 15000 1.2 Y
## 4 N 175000 F 49 P 35000 -1.0 N
## 5 N 175000 F 23 S 35000 -1.1 N
## 6 N 175000 F 28 P 7500 -1.0 N

10.2 Data types
10.2.1 Quantitative variables

• The measurements have numerical values.
• Quantative data often comes about in one of the following ways:

– Continuous variables: measurements of e.g. speed, temperature, etc.
– Discrete variables: counts of e.g. number of household members, hits on a webpage, cars passing

on a road in one hour, etc.
• Measurements like this have a well-defined scale and in R they are stored as the type numeric.
• It is important to be able to distinguish between discrete count variables and continuous variables,

since this often determines how we describe the uncertainty of a measurement.
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10.2.2 Categorical/qualitative variables

• The measurement is one of a set of given categories, e.g. sex (male/female), education level, satisfaction
score (low/medium/high), etc.

• Factors have two so-called scales:
– Nominal scale: There is no natural ordering of the factor levels, e.g. sex and hair color.
– Ordinal scale: There is a natural ordering of the factor levels, e.g. education level and satisfaction

score.
• The measurement is usually stored (which is also recommended) as a factor in R. The possible

categories are called levels. Example: the levels of the factor “sex” is male/female. A factor in R can
have a so-called attribute assigned, which tells if it is ordinal.

10.3 Variables in the data set

head(Chile)

## region population sex age education income statusquo vote
## 1 N 175000 M 65 P 35000 1.0 Y
## 2 N 175000 M 29 PS 7500 -1.3 N
## 3 N 175000 F 38 P 15000 1.2 Y
## 4 N 175000 F 49 P 35000 -1.0 N
## 5 N 175000 F 23 S 35000 -1.1 N
## 6 N 175000 F 28 P 7500 -1.0 N

• Quantitative variables in the Chile data set:

– population, age, income, statusquo

• Categorical variables:

– region, sex, education, vote

• All the categorical variables are nominal except education, which has three ordered categories (primary,
secondary, post-secondary).

11 Descriptive statistics of categorical data
11.1 Tables

• To summarize the the variable vote we can use the function tally from the mosaic package (remember
the package must be loaded via library(mosaic) if you did not do so yet):

tally( ~ vote, data = Chile)

## vote
## A N U Y <NA>
## 187 889 588 868 168

• In percent:
tally( ~ vote, data = Chile, format = "percent")

## vote
## A N U Y <NA>
## 6.9 32.9 21.8 32.1 6.2
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• Here we use an R formula (characterized by the “tilde” sign ~) to indicate that we want this variable
from the dataset Chile (without the tilde it would look for a global variable called vote and use that
rather than the one in the dataset).

11.2 2 factors: Cross tabulation
• To get an overview over the relation between two categorical variables, we can make a cross tabulation.

• To make a table of all combinations of the two factors vote and sex, we use tally again:
tally( ~ vote + sex, data = Chile)

## sex
## vote F M
## A 104 83
## N 363 526
## U 362 226
## Y 480 388
## <NA> 70 98

• We can also get the relative frequencies (in percent) columnwise:
tally( ~ vote | sex, data = Chile, format = "percent")

## sex
## vote F M
## A 7.5 6.3
## N 26.3 39.8
## U 26.3 17.1
## Y 34.8 29.4
## <NA> 5.1 7.4

• For instance we see that 34.8% of the women said they would vote yes, while this holds for only 29.4%
of the men.

11.3 Visualizing categorical data: Bar graph
• To create a bar graph plot of table data we use the function gf_bar from mosaic. For each level of the

factor, a box is drawn with the height proportional to the frequency (count) of the level.
gf_bar( ~ vote, data = Chile)
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• The bar graph can also be split by group:
gf_bar( ~ vote | sex, data = Chile)
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12 Descriptive statistics of quantitative variables

12.1 Data example: Fuel consumption of cars
• In this data set, a car magazine tested the fuel consumption of 32 cars. The variable mpg gives the fuel

consumption in miles pr. gallon (the data set is from 1974).

• The data set is built into R under the name mtcars, so it does not need to be loaded before use.
head(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21 6 160 110 3.9 2.6 16 0 1 4 4
## Mazda RX4 Wag 21 6 160 110 3.9 2.9 17 0 1 4 4
## Datsun 710 23 4 108 93 3.9 2.3 19 1 1 4 1
## Hornet 4 Drive 21 6 258 110 3.1 3.2 19 1 0 3 1
## Hornet Sportabout 19 8 360 175 3.1 3.4 17 0 0 3 2
## Valiant 18 6 225 105 2.8 3.5 20 1 0 3 1

12.2 Visualizing quantitative data: Histogram
• The way to get a first impression of a quantitative variable is to draw a histogram.

• The histogram of a variable x is made as follows:

– Divide the interval from the minimum value of x to the maximum value of x in an appropriate
number of equal sized sub-intervals.
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– Draw a box over each sub-interval with the height being proportional to the number of observations
in the sub-interval.

• Histogram of mpg for the mtcars data. The bins option sets the number of subintervals to 10.
gf_histogram( ~ mpg, data = mtcars,bins=10)
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12.3 Relation between histogram and denity function
• Suppose a sample comes from a population having a continuous distribution with density function f .

• Draw a histogram where the y-axis is scaled such that the total area of the bars is 1.

• When the number of observations (the sample size) increases we can make a finer interval division and
get a more smooth histogram.

• When the number of observations tends to infinity, we obtain a nice smooth curve, where the area below
the curve is 1. This curve is exactly the probability density function f .
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• If the histogram looks bell-shaped this may suggest a normal distribution.

12.4 Summary statistics for quantitative data
• We return to the mtcars example. A summary of the fuel consumption mpg can be retrieved using the

favstats function:
favstats( ~ mpg, data = mtcars)

## min Q1 median Q3 max mean sd n missing
## 10 15 19 23 34 20 6 32 0

• The output contains the following information
– min The minimal value in the sample is 10.4.
– max The maximal value in the sample is 33.9.
– n The sample size (number of observations) is 32.
– mean The sample mean is 20.1. Recall that this was the average of all observations x1, . . . , xn, i.e.

x̄ = 1
n

n∑
i=1

xi

– sd The sample standard deviation is 6.03. Recall that this was given by

s = 1
n − 1

n∑
i=1

(xi − x̄)2.

– missing There are no missing values.
– median The median (or 50-percentile) is the value such that half of the sample has lower values

than the median and half the sample has larger values.
– Q1 and Q3 will be introduced on later slides.

• Both the mean and the median can be considered the center of a distribution. In a symmetric distribution
(such as the normal distribution) they are equal, while in a skewed distribution, they tend to be different.

12.5 Calculation of mean, median and standard deviation using R
• The mean, median and standard deviation are just some of the summaries that can be read of the

favstats output (shown on previous page). They may also be calculated separately in the following
way:
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• Sample size of mpg:
length(mtcars$mpg)

## [1] 32

• Mean of mpg:
mean( ~ mpg, data = mtcars)

## [1] 20

• Median of mpg:
median( ~ mpg, data = mtcars)

## [1] 19

• Standard deviation for mpg:
sd( ~ mpg, data = mtcars)

## [1] 6

• We may also calculate the summaries within groups. For instance, for each engine type (variable vs)
the sample mean is:

mean( ~ mpg | factor(vs), data = mtcars)

## 0 1
## 17 25

12.6 Interpretation of summary statistics: The empirical rule

y − 3s y − 2s y − s y y + s y + 2s y + 3s

About 68% of measurements

About 95% of measurements

All or nearly all measurements

• If the histogram of the sample looks like a bell shaped curve, then we have

– about 68% of the observations lie between ȳ − s and ȳ + s.
– about 95% of the observations lie between ȳ − 2s and ȳ + 2s.
– All or almost all (99.7%) of the observations lie between ȳ − 3s and ȳ + 3s.
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12.7 Percentiles
• The pth percentile is a value such that about p% of the population (or sample) lies below or at this

value and about (100 − p)% of the population (or sample) lies above it.

12.7.1 Percentile calculation for a sample:

• First, sort data from smallest to largest. For the mpg variable:

x(1) = 10.4, x(2) = 10.4, x(3) = 13.3, . . . , x(n) = 33.9.

Here the number of observations is n = 32.

• Find the 10th percentile (i. e. p = 10):

– The observation number corresponding to the 10-percentile is N = 32·10
100 = 3.2.

– So the 10-percentile lies between the observations with observation number k = 3 and k + 1 = 4.
That is, its value lies somewhere in the interval between x(3) = 13.3 and x(4) = 14.3.

– One of several methods for estimating the 10-percentile from the value of N is defined as:

x(k) + (N − k)(x(k+1) − x(k))

which in this case gives

x(3) + (3.2 − 3)(x(4) − x(3)) = 13.3 + 0.2 · (14.3 − 13.3) = 13.5.

12.8 Median, quartiles and interquartile range
Recall
favstats( ~ mpg, data = mtcars)

## min Q1 median Q3 max mean sd n missing
## 10 15 19 23 34 20 6 32 0

• 0-percentile = 10.4 is the minimum value.
• 50-percentile = 20.1 is the median and it is a measure of the center of data.
• 25-percentile = 15.4 is called the lower quartile (Q1). Median of lower 50% of data.
• 75-percentile = 22.8 is called the upper quartile (Q3). Median of upper 50% of data.
• 100-percentile = 33.9 is the maximum value.
• Interquartile Range (IQR): a measure of variability given by the difference of the upper and lower

quartiles: 23 -15 = 8.

12.9 Box-and-whiskers plots (or simply box plots)
How to draw a box-and-whiskers plot:

• Box:

– Calculate the median, lower and upper quartiles.
– Plot a line by the median and draw a box between the upper and lower quartiles.

• Whiskers:

– Calculate interquartile range and call it IQR.
– Calculate the following values:

∗ L = lower quartile - 1.5*IQR
∗ U = upper quartile + 1.5*IQR

– Draw a line from lower quartile to the smallest measurement, which is larger than L.
– Similarly, draw a line from upper quartile to the largest measurement which is smaller than U.
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• Outliers: Measurements smaller than L or larger than U are drawn as circles.

• Note: Whiskers are minimum and maximum of the observations that are not deemed to be outliers.

points boxplot whiskers

10
15

20
25

Q1−1.5IQR

Q1
Q3

Q3+1.5IQR

12.10 Boxplot for fuel consumption
• Boxplot of the fuel consumption separately for each engine type:

favstats(mpg ~ vs, data = mtcars)

## vs min Q1 median Q3 max mean sd n missing
## 1 0 10 15 16 19 26 17 3.9 18 0
## 2 1 18 21 23 30 34 25 5.4 14 0
gf_boxplot(mpg ~ factor(vs), data = mtcars)
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• Cars with engine type 1 seem to use more fuel.
• A single car with engine type 0 differs noticeably from the others with a high fuel consumption.

12.11 2 quantitative variables: Scatter plot
• A scatter plot is used to visualize two quantitative variables.

• For instance, we can plot the relation between fuel consumption and horse powers (hp) of a car as
follows

gf_point(mpg ~ hp, data = mtcars)
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• This can be either split or coloured according to the engine typevs:
gf_point(mpg ~ hp | factor(vs), data = mtcars)
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gf_point(mpg ~ hp, col = ~factor(vs), data = mtcars)
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• If we want a regression line along with the points we can do:
gf_point(mpg ~ hp, col = ~factor(vs), data = mtcars) %>% gf_lm()

## Warning: Using the `size` aesthetic with geom_line was deprecated in ggplot2 3.4.0.
## i Please use the `linewidth` aesthetic instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
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13 Quantile plots

13.1 The empirical quantiles
• Recall that the distribution function of a random variable X was defined as:

F (x) = P (X ≤ x).

• The i
n quantiles of a distribution are the points qi such that F (qi) = i

n , i = 1, . . . , n.
• If we rank the observations in a sample

x(1) ≤ x(2) ≤ . . . ≤ x(n),

we can approximate F at x(i) by:

F̂ (x(i)) = i

n
.

• Interpretation: x(i) is approximately the i
n quantile.

• Note: various authors may use slightly different quantiles, e.g. i−0.5
n quantiles.

13.2 Normal quantile-quantile plots
• The quantiles may be used to investigate whether the sample comes from a normal distribution.

• Call the i
n th quantile of a standard normal distribution qi, i.e. P (Z ≤ qi) = i

n .
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• If Y ∼ norm(µ, σ), then this is equivalent to is equivalent to

P (Y ≤ µ + σqi) = i

n
.

• Suppose the population follows a norm(µ, σ) distribution, then the sample quantiles x(i) should be
approximately equal to the population quantiles µ + σqi.

• If we make a scatter plot of the pair (qi, x(i)), these should lie on a straight line. We call this a normal
Q-Q plot (or quantile-quantile plot).

– Example: We investigate whether the mpg variable in the mtcars data set follows a normal
distribution:

qqnorm(mtcars$mpg)
qqline(mtcars$mpg)
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14 Point and interval estimates

14.1 Point and interval estimates
• Suppose we study a population and we are interested in certain parameters of the population distribution,

e.g. the mean µ and the standard deviation σ.

• Based on a sample we can make a point estimate of the parameter. We have already seen the following
examples:

– x̄ is a point estimate of µ
– s is a point estimate of σ
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• We often supplement the point estimate with an interval estimate (also called a confidence interval).
This is an interval around the point estimate, in which we are confident (to a certain degree) that the
population parameter is located.

14.2 Point estimators: Bias
• If we want to estimate the population mean µ we have several possibilities e.g.

– the sample mean X̄
– the average XT of the sample upper and lower quartiles

• Advantage of XT : Very large/small observations have little effect, i.e. it has practically no effect if there
are a few errors in the data set.

• Disadvantage of XT : If the distribution of the population is skewed, i.e. asymmetrical, then XT is
biased, i.e. E(XT ) ̸= µ. This means that in the long run this estimator systematically over or under
estimates the value of µ.

• Generally we prefer that an estimator is unbiased, i.e. its expected value equals the true parameter
value.

• Recall that for a sample from a population with mean µ, the sample mean X̄ also has mean µ. That is,
X̄ is an unbiased estimate of the population mean µ.

14.3 Point estimators: Consistency
• From previous lectures we know that the standard error of X̄ is σ√

n
, so

– the standard error decreases when the sample size increases.
• In general an estimator with this property is called consistent.
• XT is also a consistent estimator, but has a variance that is greater than X̄.

14.4 Point estimators: Efficiency
• Since the variance of XT is greater than the variance of X̄, we prefer X̄.
• In general, we prefer the estimator with the smallest possible variance. This estimator is said to be

efficient.
• X̄ is an efficient estimator.

14.5 Notation
• The symbol ˆ above a parameter denotes a (point) estimate of the parameter. We have looked at an

– estimate of the population mean µ, namely µ̂ = x̄.
– estimate of the population standard deviation σ, namely σ̂ = s
– estimate of the population proportion p, namely the sample proportion p̂.

15 Confidence intervals
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15.1 Confidence Interval
• A confidence interval for a parameter is constructed as an interval, where we expect the population

parameter to be.
• The probability that this construction yields an interval which includes the population parameter is

called the confidence level.
– We write the confidence level as 100(1 − α)%.
– The confidence level is typically chosen to be 95%.
– α is called the error probability.
– For a 95% confidence level α = 1 − 0.95 = 0.05.

• In practice the interval is often constructed as a symmetric interval around a point estimate:
– point estimate±margin of error
– Rule of thumb: With a margin of error of 2 times the standard error you get a confidence interval,

where the confidence level is approximately 95%.
– I.e: point estimate ± 2 x standard error has confidence level of approximately 95%.

• Interpretation: We say that we are 100(1 − α)% confident that the population parameter lies in the
confidence interval.

15.2 Confidence interval for the mean (known standard deviation)
• Consider a population with population mean µ and standard deviation σ. We would like to make a

100(1 − α)% confidence interval for µ.

• Suppose we draw a random sample X1, . . . , Xn. As a point estimate for µ we use X̄.

• If the population follows a normal distribution or if n ≥ 30, we may assume X̄ ∼ norm(µ, σ√
n

).

• The z-score of X̄ follows a standard normal distribution:

Z = X̄ − µ

σ/
√

n
∼ norm(0,1).

• We determine the critical z-value zα/2 such that P (Z > zα/2) = α/2. This implies by symmetry that

P (−zα/2 ≤ Z ≤ zα/2) = 1 − α.

1 − α

zα 2− zα 2 0
• Inserting what Z is, we get

P

(
−zα/2 ≤ X̄ − µ

σ/
√

n
≤ zα/2

)
= 1 − α.

• Isolating µ in both in inequalities, we get

P
(

X̄ − zα/2
σ√
n

≤ µ ≤ X̄ + zα/2
σ√
n

)
= 1 − α.
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• That is, for 100(1 − α)% of all samples, the population mean µ lies in the interval[
X̄ − zα/2

σ√
n

; X̄ + zα/2
σ√
n

]
.

15.3 Unknown standard deviation
• The confidence interval was derived using the z-score Z = X̄−µ

σ/
√

n
.

• Problem: In practice σ is typically unknown.

• If we replace σ by the sample standard deviation S, we get the t-score

T = X̄−µ
S/

√
n

.

• Since S is random with a certain variance, this causes T to vary more than Z.

• As a consequence, T no longer follows a normal distribution, but a t-distribution with n − 1 degrees
of freedom.

15.4 Confidence interval (unknown standard deviation)
• In the situation where σ is unknown, we use that

T = X̄ − µ

S/
√

n
∼ t(n − 1).

• We determine the critical t-value tα/2 such that P (T > tα/2) = α/2. This implies by symmetry that

P (−tα/2 ≤ T ≤ tα/2) = 1 − α.

1 − α

tα 2− tα 2 0
• By exactly the same computations as before, we find that for 100(1 − α)% of all samples, µ lies in[

X̄ − tα/2
S√
n

; X̄ + tα/2
S√
n

]
.

• This interval is what we call the 100(1 − α)% confidence interval for µ.
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15.5 Calculation of critical t-value in R
• To apply the formula, we need to be able to compute the critical t-value tα/2 = P (T > α/2).

• This can be done in R via the function qdist.

• Note that we need the point with right tail probability α/2 while R gives the left tail probailities.
The right tail probability α/2 corresponds to the left tail probability 1 − α/2.

• So to find tα/2 with α = 0.05 (corresponding to a 95% confidence level) in a t-distribution with 4
degrees of freedom, we type:

qdist("t", p = 1 - 0.025, df = 4)

0.0

0.1

0.2

0.3

−4 0 4

de
ns

ity

probability

A:0.975

B:0.025

## [1] 2.8

15.5.1 Example: Confidence interval for mean

• We return to the dataset mtcars. We want to construct a 95% confidence interval for the population
mean µ of the fuel consumption.

stats <- favstats( ~ mpg, data = mtcars)
stats

## min Q1 median Q3 max mean sd n missing
## 10 15 19 23 34 20 6 32 0
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qdist("t", 1 - 0.025, df = 32 - 1, plot = FALSE)

## [1] 2

• I.e. we have
– x̄ = 20.1
– s = 6
– n = 32
– df = n − 1 = 31
– tcrit = 2.04.

• The confidence interval is x̄ ± tcrit
s√
n

= [17.9, 22.3]
• All these calculations can be done automatically by R:

t.test( ~ mpg, data = mtcars, conf.level = 0.95)

##
## One Sample t-test
##
## data: mpg
## t = 19, df = 31, p-value <2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 18 22
## sample estimates:
## mean of x
## 20

15.5.2 Example: Plotting several confidence intervals in R

• We shall look at a built-in R dataset chickwts.

• ?chickwts yields a page with the following information

An experiment was conducted to measure and compare the effectiveness of various feed
supplements on the growth rate of chickens. Newly hatched chicks were randomly allocated
into six groups, and each group was given a different feed supplement. Their weights in grams
after six weeks are given along with feed types.

• chickwts is a data frame with 71 observations on 2 variables:

– weight: a numeric variable giving the chick weight.
– feed: a factor giving the feed type.

• Calculate a confidence interval for the mean weight for each feed separately; the confidence interval is
from lower to upper given by mean±tscore * se:

cwei <- favstats( weight ~ feed, data = chickwts)
se <- cwei$sd / sqrt(cwei$n) # Standard errors
tscore <- qt(p = .975, df = cwei$n - 1) # t-scores for 2.5% right tail probability (qdist cannot take multiple df's)
cwei$lower <- cwei$mean - tscore * se
cwei$upper <- cwei$mean + tscore * se
cwei[, c("feed", "mean", "lower", "upper")]

## feed mean lower upper
## 1 casein 324 283 365
## 2 horsebean 160 133 188
## 3 linseed 219 186 252
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## 4 meatmeal 277 233 321
## 5 soybean 246 215 278
## 6 sunflower 329 298 360

• We can plot the confidence intervals as horizontal line segments using gf_errorbar:
gf_errorbar(feed ~ lower + upper, data = cwei) %>%

gf_point(feed ~ mean)

casein

horsebean

linseed

meatmeal

soybean

sunflower

200 300
mean

fe
ed

15.6 Confidence interval for proportion
• Consider a population with a distribution that can only take the values 0 and 1. The interesting

parameter of this distribution is the proportion p of the population that has the value 1.

• Given a random sample X1, . . . , Xn, recall that we estimate p by

P̂ =
∑n

i=1 Xi

n
= X̄.

• Based on the central limit theorem we have:

P̂ ≈ N

(
p,

σ√
n

)
if both np̂ and n(1 − p̂) are at least 15.

• It can be shown that a random variable that takes the value 1 with probability p and 0 with probability
(1 − p) has standard deviation

σ =
√

p(1 − p).
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That is, the standard deviation is not a “free” parameter for a 0/1 variable as it is determined by the
probability p.

• With a sample size of n, the standard error of P̂ will be:

σ√
n

=
√

p(1 − p)
n

.

• We do not know p but we insert the estimate P̂ and get the estimated standard error of P̂ :

se =

√
P̂ (1 − P̂ )

n
.

• By similar calculations as in the case of confidence intervals for the mean, we find the limits of the
confidence interval to be

P̂ ± zα/2

√
P̂ (1 − P̂ )

n
.

• Here zα/2 (or zcrit) is the critical value for which the upper tail probability in the standard normal
distribution is α/2. (E.g. we have z = 1.96 when α = 5%.)

15.6.1 Example: Point and interval estimate for proportion

• We consider again the data set concerning votes in Chile.

• We are interested in the unknown proportion p of females in the population of Chile.

• The gender distribution in the sample is:
library(mosaic)
tally( ~ sex, data = Chile)

## sex
## F M
## 1379 1321
tally( ~ sex, data = Chile, format = "prop")

## sex
## F M
## 0.51 0.49

• Estimate of p (sample proportion): p̂ = 1379
1379+1321 = 0.5107

• An approximate 95% confidence interval for p is:

p̂ ± zcrit × se = 0.5107 ± 1.96
√

0.5107(1 − 0.5107)
1379 + 1321 = (0.49, 0.53)

• Interpretation: We are 95% confident that there is between 49% and 53% females in Chile.

15.6.2 Example: Confidence intervals for proportion in R

• R automatically calculates the confidence interval for the proportion of females when we do a so-called
hypothesis test (we will get back to that later):
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prop.test( ~ sex, data = Chile, correct = FALSE)

##
## 1-sample proportions test without continuity correction
##
## data: Chile$sex [with success = F]
## X-squared = 1, df = 1, p-value = 0.3
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.49 0.53
## sample estimates:
## p
## 0.51

• The argument correct = FALSE is needed to make R use the “normal” formulas as on the slides and in
the book. When correct = TRUE (the default) a mathematical correction which you have not learned
about is applied and slightly different results are obtained.

15.6.3 Example: Chile data

We could also have computed a 99% confidence interval for the proportion of females in Chile:

• For a 99%-confidence level we have α = 1% and
1) zcrit=qdist("norm", 1 - 0.01/2)=2.576.
2) We still have p̂ = 0.5107 and n = 2700, so se =

√
p̂(1−p̂)

n = 0.0096.
3) Thereby, a 99%-confidence interval is: p̂ ± zcrit × se = [0.49, 0.54].

• Note that the confidence interval becomes wider, when we want to be more confident that the interval
contains the population parameter.

16 Confidence interval interpretation
• Assume a population parameter p = 0.5 (e.g. a fair coin)
• Draw 100 samples of size n = 20 and for each estimate p̂ and 95% confidence interval
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97 out of 100 CI's contains true parameter

• Long run interpretation (repeating the experiment many, many times)
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– Each sample gives new CI limits
– Before collecting data, the procedure for calculating a CI will provide a CI that with 95% probability

will contain the true parameter value
– Once data collected: Contains the true value or not

• CI contains values of the parameter that are compatible with the observed data
– Either the CI contains the true parameter, or something “extraordinary” has happened (not

impossible, just improbable/surprising)
• We are 95% confident that there is between 49% and 53% females in Chile

17 Confidence interval for the variance
17.1 The sample variance

• Suppose we are interested in the variance σ2 of a population.

• We draw a random sample X1, . . . , Xn and use the sample variance S2 as a point estimate or σ2.

• When the population distribution is normal, or n ≥ 30,

(n − 1)S2

σ2 ∼ χ2(n − 1),

where χ2(n − 1) is the chi-square distribution with (n − 1) degrees of freedom (se next slide).

– As a rule of thumb, the degrees of freedom are found as the number of observations (n) minus the
number of unknown parameters describing the mean (one, namely µ).

17.2 The χ2-distribution
• The distribution χ2(k) is called the chi-square distribution.

– It is a continuous distribution on (0, ∞).

– It depends on a the parameter k called the degrees of freedom.

– The degrees of freedom determine the shape of the distribution.

– The mean value is k.

1 degree of freedom

0 1 2 3 4 5

0

3 degrees of freedom

0 1 2 3 4 5

0

5 degrees of freedom

0 1 2 3 4 5

0
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17.3 Confidence interval for variance
• To make a confidence interval for σ2, we draw a random sample X1, . . . , Xn, compute S2 and recall that

(n − 1)S2

σ2 ∼ χ2(n − 1).

• Let χ2
α/2 and χ2

1−α/2 be the critical values in a χ2-distribution with (n − 1) degrees of freedom such the
right tail probabilities are α/2 and 1 − α/2, respectively.

χα 2
2χ1−α 2

2

1 − α

• Then
P

(
χ2

1−α/2 ≤ (n − 1)S2

σ2 ≤ χ2
α/2

)
= 1 − α.

• Isolating σ2, this is equivalent to

P

(
(n − 1)S2

χ2
α/2

≤ σ2 ≤ (n − 1)S2

χ2
1−α/2

)
= 1 − α.

• So we get the confidence interval for σ2:[
(n − 1)S2

χ2
α/2

; (n − 1)S2

χ2
1−α/2

]
.

• A confidence interval for σ can be found by taking square roots:[√
(n − 1)S2

χ2
α/2

;
√

(n − 1)S2

χ2
1−α/2

]
.

• Note that these confidence intervals are not symmetric around the point estimate.

17.3.1 Example: confidence interval for a variance

• We return to the dataset mtcars and construct a 95% confidence interval for the population variance
σ2 of the fuel consumption. We find the sample variance to be 6.0269482 ≈ 36.3 using ´favstats´.

stats <- favstats( ~ mpg, data = mtcars)
stats

## min Q1 median Q3 max mean sd n missing
## 10 15 19 23 34 20 6 32 0

• The critical χ2-values are found using qdist. The degrees of freedom are n − 1. The χ2-distribution is
not symmetric, so we need to find both χ2

α/2 and χ2
1−α/2.
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qdist("chisq", 1 - 0.025, df = 32 - 1 )
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## [1] 48
qdist("chisq", 0.025, df = 32 -1)
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## [1] 18

• I.e. we have
– χ2

α/2 = 48.23189
– χ2

1−α/2 = 17.53874
• So we get the confidence interval for σ2:[

(n − 1)s2

χ2
α/2

; (n − 1)s2

χ2
1−α/2

]
=
[

31 · 6.0269482

48.23189 ; (31 · 6.0269482

17.53874

]
= [23.3, 64.2].

• A confidence interval for σ is [
√

23.3,
√

64.2] = [4.83, 8.01].

18 Determining sample size

18.1 Determining sample size
• When planning an experiment, one has to decide how large the sample size should be.

– If the sample size is too small, the parameter estimates will have high variance and hence confidence
intervals will be large.

– A sample size that is too large is costly in terms of time, money, etc.

18.2 Sample size for proportion
• The confidence interval is of the form point estimate±estimated margin of error.
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• Imagine that we want to plan an experiment, where we want to achieve a certain margin of error
M (and thus a specific width of the associated confidence interval).

• When we estimate a proportion the margin of error is

M = zcrit

√
p(1 − p)

n
,

where the critical z-score, zcrit, is determined by the specified confidence level.
• If we solve the equation above we see that if we choose sample size

n = p(1 − p)
(zcrit

M

)2
,

then we obtain an estimate of π with margin of error M .
• If we do not have a good guess for the value of p we can use the worst case value p = 50%. The

corresponding sample size n =
(

zcrit

2M

)2 ensures that we obtain an estimate with a margin of error, which
is at the most M .

18.2.1 Example

• We want to make a survey to determine the proportion of the Danish population that will a certain
party at the next election. How many voters should we ask to get a margin of error, which equals 1%?

• We set the confidence level to be 95%, which means that zcrit = 1.96.
• Worst case is p = 0.5, yielding:

n = p(1 − p)
(zcrit

M

)2
= 1

4

(
1.96
0.01

)2
= 9604.

• If we are interested in the proportion of voters that vote for "socialdemokratiet’ ’ a good guess is p = 0.23,
yielding

n = p(1 − p)
(zcrit

M

)2
= 0.23(1 − 0.23)

(
1.96
0.01

)2
= 6804.

• If we instead are interested in "liberal alliance’ ’ a good guess is p = 0.05, yielding

n = p(1 − p)
(zcrit

M

)2
= 0.05(1 − 0.05)

(
1.96
0.01

)2
= 1825.

18.3 Sample size for mean
• The confidence interval is of the form point estimate±estimated margin of error.
• Imagine that we want to plan an experiment, where we want to achieve a certain margin of error

M .
• When we estimate a mean the margin of error is

M = zcrit
σ√
n

,

where the critical z-score, zcrit, is determined by the specified confidence level.
• If we solve the equation above we see:

– If we choose sample size n =
(

zcritσ
M

)2, then we obtain an estimate with margin of error M .
• Problem: We usually do not know σ. Possible solutions:

– Based on similar studies conducted previously, we make a qualified guess at σ.
– Based on a pilot study a value of σ is estimated.
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