Logistic Regression

The ASTA team

Contents

1	\mathbf{Intr}	roduction to logistic regression
	1.1	Binary response
	1.2	A linear model
2	Sim	aple logistic regression
	2.1	Logistic model
	2.2	Logistic transformation
	2.3	Odds-ratio
	2.4	Simple logistic regression
	2.5	Example: Credit card data
	2.6	Example: Fitting the model
	2.7	Test of no effect
	2.8	Confidence interval for odds ratio
	2.9	Plot of model predictions against actual data
3	Mu	ltiple logistic regression
	3.1	Several numeric predictors
	3.2	Example
	3.3	Global test of no effects
	3.4	Example
	3.5	Test of influence of a given predictor
	3.6	Prediction and classification

1 Introduction to logistic regression

1.1 Binary response

- We consider a binary response y with outcome 1 or 0. This might be a code indicating whether a person is able or unable to perform a given task.
- Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
- We shall study models for

$$P(y = 1 \mid x)$$

i.e. the probability that a person of age x is able to complete the task.

• We shall see methods for determining whether or not age actually influences the probability, i.e. is y independent of x?

1.2 A linear model

$$P(y = 1 \mid x) = \alpha + \beta x$$

is simple, but often inappropriate. If β is positive and x sufficiently large, then the probability exceeds 1.

2 Simple logistic regression

2.1 Logistic model

Instead we consider the odds that the person is able to complete the task

$$\mathtt{Odds}(y=1\,|\,x) = \frac{P(y=1\,|\,x)}{P(y=0\,|\,x)} = \frac{P(y=1\,|\,x)}{1-P(y=1\,|\,x)}$$

which can have any positive value.

The logistic model is defined as:

$$logit(P(y=1 \mid x)) = log(Odds(y=1 \mid x)) = \alpha + \beta x$$

The function $logit(p) = log(\frac{p}{1-p})$ - i.e. log of odds - is termed the logistic transformation.

Remark that log odds can be any number, where zero corresponds to $P(y=1 \mid x) = 0.5$. Solving $\alpha + \beta x = 0$ shows that at age $x_0 = -\alpha/\beta$ you have fifty-fifty chance of solving the task.

2.2 Logistic transformation

• The function logit() (remember to load mosaic first) can be used to calculate the logistic transformation:

```
p <- seq(0.1, 0.9, by = 0.2)
p
```

```
## [1] 0.1 0.3 0.5 0.7 0.9
```

```
1 <- logit(p)
1</pre>
```

```
## [1] -2.1972246 -0.8472979 0.0000000 0.8472979 2.1972246
```

• The inverse logistic transformation <code>ilogit()</code> applied to the transformed values can recover the original probabilities:

```
ilogit(1)
```

```
## [1] 0.1 0.3 0.5 0.7 0.9
```

Plot of logistic function and inverse logistic

```
p=seq(0.001,0.999,by=0.005)
plot(p,logit(p),type="l")
```


x=seq(-7,7,by= 0.1)
plot(x,ilogit(x),type="l")

2.3 Odds-ratio

Interpretation of β :

What happens to odds, if we increase age by 1 year?

Consider the so-called **odds-ratio**:

$$\frac{\mathtt{Odds}(y=1\,|\,x+1)}{\mathtt{Odds}(y=1\,|\,x)} = \frac{\exp(\alpha+\beta(x+1))}{\exp(\alpha+\beta x)} = \exp(\beta)$$

where we see, that $\exp(\beta)$ equals the odds for age x+1 relative to odds at age x.

This means that when age increase by 1 year, then the relative change

$$\frac{\exp(\alpha + \beta(x+1)) - \exp(\alpha + \beta x)}{\exp(\alpha + \beta x)}$$

in odds is given by $100(\exp(\beta) - 1)\%$.

2.4 Simple logistic regression

Logistic curves

Examples of logistic curves for P(y=1|x). The black curve has a positive β -value (=10), whereas the red has a negative β (=-3).

In addition we note that:

- Increasing the absolute value of β yields a steeper curve.
- When $P(y=1 \mid x) = \frac{1}{2}$ then logit is zero, i.e. $\alpha + \beta x = 0$.

This means that at age $x=-\frac{\alpha}{\beta}$ you have 50% chance to perform the task.

2.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

• Data structure: For each level of income, we let n denote the number of persons with that income, and credit how many of these that carries a credit card.

creInc <- read.csv("https://asta.math.aau.dk/datasets?file=income-credit.csv")</pre>

head(creInc)

```
Income
##
              n credit
                      0
##
          13
              1
              8
                      2
                      2
          15 14
## 5
          16
              9
                      0
## 6
          17
              8
```

2.6 Example: Fitting the model

```
modelFit <- glm(cbind(credit,n-credit) ~ Income, data = creInc, family = binomial)</pre>
```

- cbind gives a matrix with two column vectors: credit and n-credit, where the latter is the vector counting the number of persons without a credit card.
- The response has the form cbind(credit,n-credit).
- We need to use the function glm (generalized linear model).
- The argument family=binomial tells the function that the data has binomial variation. Leaving out this argument will lead R to believe that data follows a normal distribution as with lm.
- The function coef extracts the coefficients (estimates of parameters) from the model summary:

coef(summary(modelFit))

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.5179469 0.71033573 -4.952513 7.326117e-07
## Income 0.1054089 0.02615743 4.029788 5.582714e-05
```

2.7 Test of no effect

coef(summary(modelFit))

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.5179469 0.71033573 -4.952513 7.326117e-07
## Income 0.1054089 0.02615743 4.029788 5.582714e-05
```

Our model for dependence of odds of having a credit card related to income(x) is

$$logit(x) = \alpha + \beta x$$

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

$$H_0: \beta = 0$$

with the alternative $\beta \neq 0$. Inspecting the summary reveals that $\hat{\beta} = 0.1054$ is more than 4 standard errors away from zero.

With a z-score equal to 4.03 we get the tail probability

```
ptail <- 2*(1-pdist("norm",4.03,xlim=c(-5,5)))</pre>
```


[1] 5.577685e-05

Which is very significant - as reflected by the p-value.

2.8 Confidence interval for odds ratio

From the summary:

- $\hat{\beta} = 0.10541$ and hence $\exp(\hat{\beta}) 1 = 0.11$. If income increases by 1000 euro, then odds increases by 11%.
- Standard error on $\hat{\beta}$ is 0.02616 and hence a 95% confidence interval for log-odds ratio is $\hat{\beta} \pm 1.96 \times 0.02616 = (0.054; 0, 157)$.
- Corresponding interval for odds ratio: $\exp((0.054; 0, 157)) = (1.056; 1.170)$, i.e. the increase in odds is with confidence 95% between 5.6% and 17%.

2.9 Plot of model predictions against actual data Expected (red line) and observed (black dots) probabilities

- Tendency is fairly clear and very significant.
- Due to low sample size at some income levels, the deviations are quite large.

3 Multiple logistic regression

3.1 Several numeric predictors

We generalize the model to the case, where we have k predictors x_1, x_2, \ldots, x_k . Where some might be dummies for a factor.

$$logit(P(y = 1 | x_1, x_2, ..., x_k)) = \alpha + \beta_1 x_1 + ... + \beta_k x_k$$

Interpretation of β -values is unaltered: If we fix x_2, \ldots, x_k and increase x_1 by one unit, then the relative change in odds is given by $\exp(\beta_1) - 1$.

3.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in the breast.

- Nine clinical variables with a score between 0 and 10.
- The binary variable Class with levels benign/malignant.
- By default R orders the levels lexicografically and chooses the first level as reference (y = 0). Hence benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

```
BC <- read.table("https://asta.math.aau.dk/datasets?file=BCO.dat",header=TRUE)
head(BC)</pre>
```

```
##
     nuclei cromatin Size.low Size.medium Shape.low
                                                             Class
## 1
          1
                    3
                           TRUE
                                       FALSE
                                                   TRUE
                                                            benign
                    3
## 2
         10
                          FALSE
                                        TRUE
                                                  FALSE
                                                            benign
## 3
          2
                    3
                           TRUE
                                       FALSE
                                                   TRUE
                                                            benign
## 4
          4
                    3
                          FALSE
                                       FALSE
                                                  FALSE
                                                            benign
                    3
## 5
          1
                           TRUE
                                       FALSE
                                                   TRUE
                                                            benign
                    9
                          FALSE
                                                  FALSE malignant
## 6
         10
                                       FALSE
```

3.3 Global test of no effects

First we fit the model $\mathtt{mainEffects}$ with main effect of all predictors - remember the notation \sim . for all predictors. Then we fit the model $\mathtt{noEffects}$ with no predictors.

```
mainEffects <- glm(factor(Class)~., data=BC, family=binomial)
noEffects <- glm(factor(Class)~1, data=BC, family=binomial)</pre>
```

First we want to test, whether there is any effect of the predictors, i.e the null hypothesis

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$$

3.4 Example

Similarly to 1m we can use the function anova to compare mainEffects and noEffects. Only difference is that we need to tell the function that the test is a chi-square test and not an F-test.

```
anova(noEffects, mainEffects, test="Chisq")
```

```
## Analysis of Deviance Table
##
## Model 1: factor(Class) ~ 1
## Model 2: factor(Class) ~ nuclei + cromatin + Size.low + Size.medium +
##
      Shape.low
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
##
## 1
          682
                  884.35
## 2
          677
                  135.06 5
                              749.29 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

mainEffects is a much better model.

The test statistic is the Deviance (749.29), which should be small.

It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis) degrees of freedom.

The 95%-critical value for the $\chi^2(5)$ distribution is 11.07 and the p-value is in practice zero.

3.5 Test of influence of a given predictor

```
round(coef(summary(mainEffects)),4)
```

```
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -0.7090
                                 0.8570 -0.8274
                                                  0.4080
## nuclei
                     0.4403
                                 0.0823 5.3484
                                                  0.0000
## cromatin
                     0.5058
                                 0.1444 3.5026
                                                  0.0005
## Size.lowTRUE
                    -3.6154
                                 0.8081 -4.4740
                                                  0.0000
## Size.mediumTRUE
                                 0.7188 -3.3074
                                                  0.0009
                   -2.3773
## Shape.lowTRUE
                    -2.1490
                                 0.6054 -3.5496
                                                  0.0004
```

For each predictor p can we test the hypothesis:

$$H_0: \beta_p = 0$$

• Looking at the **z**-values, there is a clear effect of all 5 predictors. Which of course is also supported by the p-values.

3.6 Prediction and classification

```
BC$pred <- round(predict(mainEffects,type="response"),3)</pre>
```

- We add the column pred to our dataframe BC.
- pred is the final model's estimate of the probability of malignant.

```
head(BC[,c("Class","pred")])
```

```
## Class pred
## 1 benign 0.011
## 2 benign 0.945
## 3 benign 0.017
## 4 benign 0.929
## 5 benign 0.011
## 6 malignant 1.000
```

Not good for patients 2 and 4.

.

We may classify by round(BC\$pred):

- 0 to denote benign (probability BC\$pred less than 0.5)
- 1 to denote malignant (probability BC\$pred more than 0.5)

```
tally(~ Class + round(pred), data = BC)
```

22 patients are misclassified.

```
sort(BC$pred[BC$Class=="malignant"])[1:5]
```

```
## [1] 0.035 0.037 0.089 0.190 0.205
```

There is a malignant woman with a predicted probability of malignancy, which is only 3.5%.

If we assign all women with predicted probability of malignancy above 5% to further investigation, then we only miss two malignant.

The expense is that the number of false positive increases from 11 to 50.

```
tally(~ Class + I(pred>.1), data = BC)
```

```
## I(pred > 0.1)
## Class TRUE FALSE
## benign 27 417
## malignant 236 3
```

- If we instead set the alarm to 10%, then the number of false positives decreases from 50 to 27.
- But at the expense of 3 false negative.