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1 Contingency tables

1.1 A contingency table

o We return to the dataset popularKids, where we study association between 2 factors: Goals and
Urban.Rural.

e Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).

popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.dat")
library(mosaic)

tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)

tab

## Goals



## Urban.Rural Grades Popular Sports Total

## Rural 57 50 42 149
## Suburban 87 42 22 151
## Urban 103 49 26 178
## Total 247 141 90 478

1.1.1 A conditional distribution
e Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural,
i.e. the sum in each row of the table is 100 (up to rounding):

tab <- tally(-~Urban.Rural + Goals, data = popKids)
addmargins (round (100 * prop.table(tab, 1)) ,margin = 2)

## Goals

## Urban.Rural Grades Popular Sports Sum
## Rural 38 34 28 100
## Suburban 58 28 15 101
## Urban 58 28 15 101

e Here we will talk about the conditional distribution of Goals given Urban.Rural.
e An important question could be:
— Are the goals of the kids different when they come from urban, suburban or rural areas? l.e. are
the rows in the table significantly different?
o There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

e Recall, that two factors are independent, when there is no difference between the population’s
distributions of one factor given the levels of the other factor.

e Otherwise the factors are said to be dependent.

e If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals

## Urban.Rural Grades Popular Sports
## Rural 500 300 200
#i# Suburban 500 300 200
## Urban 500 300 200

e Then the factors Goals and Urban.Rural are independent.

e We take a sample and “measure” the factors F; and Fy. E.g. Goals and Urban.Rural for a random
child.

e The hypothesis of interest today is:

Hy : Fy and F3; are independent, H, : F} and F5; are dependent.

2.2 The Chi-squared test for independence

o The relative frequencies in the sample gives an estimate of the unconditional distribution of Goals:

n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals

## Goals



## Grades Popular Sports
#i# 51.7 29.5 18.8

o If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.
e The corresponding expected counts in the sample are then:

## Goals

## Urban.Rural Grades Popular Sports Sum

## Rural 77.0 (61.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (61.7%) 52.5 (29.5%) 33.5 (18.8}%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)
2.3 Calculation of expected table

pctexptab

## Goals

## Urban.Rural Grades Popular Sports Sum

## Rural 77.0 (61.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8})) 178.0 (100%)
##  Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

e We note that
— The relative frequency for a given column is columnTotal divided by tableTotal. For example
Grades, which is %g =51.7%.
— The expected value in a given cell in the table is then the cell’s relative column frequency multiplied
by the cell’s rowTotal. For example Rural and Grades: 149 x 51.7% = 77.0.
e This can be summarized to:
— The expected value in a cell is the product of the cell’s rowTotal and columnTotal divided by

tableTotal.

2.4 Chi-squared (x?) test statistic

e We have an observed table:

tab

#it Goals

## Urban.Rural Grades Popular Sports
#i# Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

e And an expected table, if Hy is true:

## Goals

## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 44.0 28.1 149.0
## Suburban 78.0 44.5 28.4 151.0
## Urban 92.0 52.5 33.5 178.0
## Sum 247.0 141.0 90.0 478.0

o If these tables are “far from each other”, then we reject Hy. We want to measure the distance via the
Chi-squared test statistic:

- X2=% (f";ief)? Sum over all cells in the table



— fo is the frequency in a cell in the observed table
— fe is the corresponding frequency in the expected table.
» We have: (57 — 77)? (26 — 33.5)2
57 — — 33.
X3 = 44— 188
obs T Y

e Is this a large distance??

2.5 x’-test template.

e We want to test the hypothesis Hy of independence in a table with r rows and ¢ columns:
— We take a sample and calculate X% - the observed value of the test statistic.
— p-value: Assume Hj is true. What is then the chance of obtaining a larger X2 than ngs, if we
repeat the experiment?
o This can be approximated by the y2-distribution with df = (r — 1)(c — 1) degrees of freedom.
o For Goals and Urban.Rural we have r = ¢ = 3, i.e. df =4 and X2, = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)

0.15-
> i probability
£'0.10
% B ~o0.909
© B:0.001

0.05 -

0.00 -

0 5 10 15 20

## [1] 0.00086

e There is clearly a significant association between Goals and Urban.Rural.

2.6 The function chisq.test.

o All of the above calculations can be obtained by the function chisq.test.

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat

##



## Pearson's Chi-squared test

#i#

## data: tab

## X-squared = 19, df = 4, p-value = 8e-04

testStat$expected

## Goals

## Urban.Rural Grades Popular Sports
## Rural 7 44.0 28.1
## Suburban 78 44.5 28.4
#i# Urban 92 52.5 33.5

e The frequency data can also be put directly into a matrix.

data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)

row.names (tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab

## Grades Popular Sports

## Rural 57 50 42

## Suburban 87 42 22

## Urban 103 49 26

chisq.test(tab)

##

## Pearson's Chi-squared test

##

## data: tab

## X-squared = 19, df = 4, p-value = 8e-04

3 The y’-distribution

3.1 The Y?-distribution

o The x2-distribution with df degrees of freedom:
— Is never negative.
— Has mean p = df
— Has standard deviation o = /2df
— Is skewed to the right, but approaches a normal distribution when df grows.
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4 Agresti - Summary

4.1 Summary

o For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be
fe>5.
e Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

1. Assumptions: Two categorical variables, random sampling, f, = 5 in all cells
2. Hypotheses: Hy: Statistical independence of variables
H,: Statistical dependence of variables

e g2
3. Test statistic: y*> = 3 o = fe)”

, where f, = (R()w‘l()tal?(C01un?I'1 total)
fo Taotal sample size
4. P-value: P = right-tail probability above observed y? value,
for chi-squared distribution with df = (r — 1)(¢c — 1)
5. Conclusion: Report P-value
If decision needed, reject Hy at a-level if P = «

5 Standardized residuals

5.1 Residual analysis

o If we reject the hypothesis of independence it can be of interest to identify the significant deviations.

e In a given cell in the table, f, — f. is the deviation between data and the expected values under the
null hypothesis.

e We assume that f. > 5.

If Hy is true, then the standard error of f, — f. is given by

se =/ f.(1 — rowProportion)(1 — columnProportion)



e The corresponding z-score
fo - fe

se

z =

should in 95% of the cells be between +2. Values above 3 or below -3 should not appear.
e In popKids table cell Rural and Grade we got f. = 77.0 and f, = 57. Here columnProportion= 51.7%
and rowProportion= 149/478 = 31.2%.
o We can then calculate
o7 =17

z= =-3.95
V/77(1 = 0.517)(1 — 0.312)

e Compared to the null hypothesis there are way too few rural kids who find grades important.
o In summary: The standardized residuals allow for cell-by-cell (f. vs f,) comparision.

5.2 Residual analysis in R

e In R we can extract the standardized residuals from the output of chisq.test:

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)

testStat$stdres

## Goals

## Urban.Rural Grades Popular Sports
## Rural -3.951 1.310 3.523
## Suburban 1.767 -0.548 -1.619
## Urban 2.087 -0.727 -1.819

5.3 Why not just use two-way ANOVA ?

e number of persons in different categories are not normally distributed

e variance typically larger the larger expected frequency

o underlying data are discrete (for each person, which column and row category does person belong to)

e these discrete variables are naturally modelled in terms of probabilies for different categories

o therefore hypothesis of independence becomes natural null hypothesis

e it is possible to model table frequencies as dependent variable using a regression model but then we
need the framework of generalized linear models (see last slides)

Contingency table:
o counts of how many individuals fall within different categories for two (or more) categorical variables
Two-way ANOVA:

« a number of individuals/objects/. .. available for each combination of two categorical variables
o mnext a continuous variable is measured for each individual or object (this becomes the response variable)

6 Models for table data in R

6.1 Example

o We will study the dataset HairEyeColor.

HairEyeColor <- read.delim("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt")
head (HairEyeColor)

#it Hair Eye Sex Freq
## 1 Black Brown Male 32
## 2 Brown Brown Male 53



##

3

Red Brown Male 10

## 4 Blond Brown Male 3
## 5 Black Blue Male 11
## 6 Brown Blue Male 50

Data is organized such that the variable Freq gives the frequency of each combination of the factors
Hair, Eye and Sex.

For example: 32 observations are men with black hair and brown eyes.

We are interested in the association between eye color and hair color ignoring the sex

We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

HairEye <- aggregate(Freq ~ Eye + Hair, FUN = sum, data = HairEyeColor)

HairEye

#it Eye Hair Freq
## 1 Blue Black 20
## 2 Brown Black 68
## 3 Green Black 5
## 4 Hazel Black 15
## 5 Blue Blond 94
## 6 Brown Blond 7
## 7 Green Blond 16
## 8 Hazel Blond 10
## 9 Blue Brown 84
## 10 Brown Brown 119
## 11 Green Brown 29
## 12 Hazel Brown 54
## 13 Blue Red 17
## 14 Brown Red 26

##
#

15 Green Red 14
16 Hazel Red 14

6.2 Model specification

6.3

We can write down a model for (the logarithm of) the expected frequencies by using dummy variables
Zely Ze2y Ze3 and Zh1, Zh2; Zh3
To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

log(fe) = o+ Be1ze1 + Beazez + Beszes + Brizn1 + Braznz + Brazns.

Note that we haven’t included an interaction term, which is this case implies, that we assume indepen-
dence between Eye and Hair in the model.

Since our response variable now is a count it is no longer a linear model (1m) as we have been used to
(linear regression).

Instead it is a so-called generalized linear model and the relevant R command is glm.

Model specification in R

model <- glm(Freq ~ Hair + Eye, family = poisson, data = HairEye)

The argument family = poisson ensures that R knows that data should be interpreted as discrete
counts and not a continuous variable.

summary (model)

##

## Call:



## glm(formula = Freq ~ Hair + Eye, family = poisson, data = HairEye)
##
## Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) 3.6693 0.1105  33.19 < 2e-16 *xx*x*
## HairBlond 0.1621 0.1309 1.24 0.216

## HairBrown 0.9739 0.1129 8.62 < 2e-16 **x
## HairRed -0.4195 0.1528 -2.75 0.006 *x

## EyeBrown 0.0230 0.0959 0.24 0.811

## EyeGreen -1.2118 0.1424 -8.51 < 2e-16 *xx*x*
## EyeHazel -0.8380 0.1241 -6.75 1.5e-11 xxx
## ——

## Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for poisson family taken to be 1)
##

## Null deviance: 453.31 on 15 degrees of freedom
## Residual deviance: 146.44 on 9 degrees of freedom
## AIC: 241

##

## Number of Fisher Scoring iterations: 5

o A value of X2 = 146.44 with df = 9 shows that there is very clear significance and we reject the null
hypothesis of independence between hair and eye color.

1 - pdist("chisq", 146.44, df = 9)

0.100-

0.075-

probability

B ~:1.000

0.050 -

density

0.025 -

0.000 -

## [11 O



6.4

Expected values and standardized residuals

3.67+0.02

We also want to look at expected values and standardized (studentized) residuals.
The null hypothesis predicts e
This is significantly too many, since the standardized residual is 5.86.

The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is

= 40.1 with brown eyes and black hair, but we have observed 68.

significantly too few, since the standardized residual is -9.42.

HairEye$fitted <- fitted(model)
HairEye$resid <- rstudent(model)
HairEye

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Eye
Blue
Brown
Green
Hazel
Blue
Brown
Green
Hazel
Blue
Brown
Green
Hazel
Blue
Brown
Green
Hazel

Hair Freq fitted

Black
Black
Black
Black
Blond
Blond
Blond
Blond
Brown
Brown
Brown
Brown

Red

Red

Red

Red

20
68
5
15
94
7
16
10
84
119
29
54
17
26
14
14

39.
40.
11.
16.
46.
47.
13.
19.
103.
106.
30.
44 .
.79
.39
.68
11.

25
26

22
14
68
97
12
20
73
95
87
28
92
93

15

resid

.492
.856
.508
.583
.368
.423
.719
.936
.437
.151
.511
.023
.399
.101
.368
.961
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