ASTA

The ASTA team

Contents

	0.1	Sources of variation	2
	0.2	Data from Peter Koch	2
	0.3	Relative errors	3
	0.4	Approximation of the relative error	3
	0.5	Transformation of errors	4
	0.6	Transformed data	4
	0.7	Model considerations	5
	0.8	Sources of variation	5
	0.9	Statistical model	5
	0.10	Estimation of systematic error	6
	0.11	Estimation of random error	6
	0.12	Fit	6
	0.13	Solution	7
	0.14	Summing up	7
	0.15	Test of no random effect	8
	0.16	Coefficient of variation	8
	0.17	The lognormal distribution	8
	0.18	Coefficient of variation for lognormal distribution	9
	0.19	Linear calibration	9
	0.20	Linear calibration fit	10
	0.21	Calibrated values	10
	0.21		10
1	Lot	variation	11
1	Lot	variation	11
1 2	Lot Test	variation	11 12
1 2	Lot Test 2.1	variation Sing for log normality Log normality	11 12 12
1 2	Lot Test 2.1 2.2	variation sing for log normality Log normality Testing normality	 11 12 12 12 12
1 2	Lot Test 2.1 2.2 2.3	variation Sing for log normality Log normality	 11 12 12 12 13
1 2	Lot Test 2.1 2.2 2.3 2.4	variation Sing for log normality Log normality Testing normality Gearys test Gearys test	 11 12 12 12 13 13
1 2	Lot Test 2.1 2.2 2.3 2.4 2.5	variation Sing for log normality Log normality Testing normality Gearys test Gearys test Goodness of fit - die example	11 12 12 12 13 13 13
1 2	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6	variation Sing for log normality Log normality Testing normality Gearys test Gearys test Goodness of fit - die example Goodness of fit - die example	11 12 12 12 13 13 13 14
1 2	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7	variation Sing for log normality Log normality Testing normality Gearys test Gearys test Goodness of fit - die example Goodness of fit - normal distribution	11 12 12 12 13 13 13 14 14
1 2	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	variation sing for log normality Log normality Testing normality Gearys test Gearys test Goodness of fit - die example Goodness of fit - normal distribution Goodness of fit - normal distribution	11 12 12 12 13 13 13 14 14 15
1 2	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	variation sing for log normality Log normality	11 12 12 12 13 13 13 14 14 15 15
12	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	variation Sing for log normality Log normality Testing normality Gearys test Gearys test Goodness of fit - die example Goodness of fit - normal distribution Goodness of fit - normal distribution Goodness of fit - normal distribution Other tests of normality	11 12 12 13 13 13 13 14 14 15 15 16
1 2	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	variation sing for log normality Log normality Testing normality Gearys test Goodness of fit - die example Goodness of fit - normal distribution Goodness of fit - normal distribution Goodness of fit - normal distribution Other tests of normality	11 12 12 12 13 13 13 13 14 14 15 15 16
1 2 3	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Sour	variation Sing for log normality Log normality . Testing normality . Gearys test . Gearys test . Goodness of fit - die example . Goodness of fit - die example . Goodness of fit - normal distribution . Goodness of fit - normal distribution . Goodness of fit - normal distribution . Order tests of normality .	11 12 12 12 13 13 13 13 14 14 15 15 16 16
1 2 3	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Sour 3.1 2.2	variation Sing for log normality Log normality Testing normality Gearys test Goodness of fit - die example Goodness of fit - die example Goodness of fit - normal distribution Goodness of fit - normal distribution Goodness of fit - normal distribution Oodness of fit - normal distribution Oodness of fit - normal distribution Oodness of fit - normal distribution Other tests of normality The general model Model for our dota	11 12 12 12 13 13 13 13 14 14 15 15 16 16 17
1 2 3	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Sour 3.1 3.2 2.3	variation sing for log normality Log normality Testing normality Gearys test Goodness of fit - die example Goodness of fit - die example Goodness of fit - normal distribution The general model Model for our data Linger calibration	11 12 12 12 13 13 13 13 14 14 15 15 16 16 17 17
1 2 3	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Sour 3.1 3.2 3.3 2.4	variation sing for log normality Log normality Testing normality Gearys test Goodness of fit - die example Goodness of fit - die example Goodness of fit - normal distribution Oddness of fit - normal distribution Other tests of normality Trees of variation The general model Model for our data Linear calibration	11 12 12 13 13 13 14 14 15 15 16 16 17 17 17
1 2 3	Lot Test 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Sour 3.1 3.2 3.3 3.4 2.5	variation sing for log normality Log normality Testing normality Gearys test Goodness of fit - die example Goodness of fit - die example Goodness of fit - normal distribution Define tests of normality Trees of variation The general model Model for our data Linear calibration Model for calibrated data	11 12 12 13 13 13 13 14 14 15 15 16 16 17 17 17 18 18

4 N	Mix	cture of lots					
4	.1	Transforming					
4	.2	Mixture model					
4	.3	Fitting a mixture					
4	.4	Comparing model and data					
4	.5	Concluding remarks					

0.1 Sources of variation

Capacitors come with a nominal value for the capacitance.

• When capacitance is measured, we do not get exactly the nominal value.

We shall study 2 sources of variation:

- measurement variation due to random errors on a measuring device
- component variation due to random errors in the production process

0.2 Data from Peter Koch

Peter has done 100 independent measurements of the capacitance of each 4 of the displayed capacitors and one additional.

- Nominal values are 47, 47, 100, 150, 150 nF.
- All have a stated tolerance of 1%.

load(url("https://asta.math.aau.dk/datasets?file=cap_1pct.RData"))
head(capDat, 4)

##		capacity	nomval	sample
##	1	45.69	47	s_1_nF47
##	2	45.71	47	s_1_nF47
##	3	45.69	47	s_1_nF47
##	4	45.71	47	s 1 nF47

Here we see the first 4 measurements of the first capacitor with nominal value 47nF.

• Remark: The measured values are consistently below the nominal value minus the 1% tolerance: 47 - 0.47 = 46.53.

table(capDat\$sample)

```
##
## s_1_nF47 s_2_nF47 s_3_nF100 s_4_nF150 s_5_nF150
## 100 100 100 100 100
```

0.3 Relative errors

• Instead of considering the raw errors

measuredValue - nominalValue,

we will consider the relative error

 $\frac{\text{measuredValue} - \text{nominalValue}}{\text{nominalValue}}.$

• A tolerance of 0.01 means that the relative error should be within ± 0.01 .

0.4 Approximation of the relative error

• Instead of looking at the relative error, we may look at the following approximation:

 $\ln \text{Error} = \ln \left(\frac{\text{measuredValue}}{\text{nominalValue}} \right) \approx \frac{\text{measuredValue} - \text{nominalValue}}{\text{nominalValue}}$

• This is illustrated below with a nominal value of n = 47 and measured values of 47 plus/minus 5%. n <- 47

```
m <- seq(47-5*0.01*47, 47+5*0.01*47, length.out = 100)
plot(m, log(m/n), col = "red", type = "l")
lines(m, (m - n)/n, col = "blue", type = "l")
legend("topleft", legend = c("log(m/n)", "(m-n)/n"), lty = 1, col = c("red", "blue"))</pre>
```


0.5 Transformation of errors

- The approximation can be justified theoretically.
- Recall the linear approximation of a function:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

• If we take

$$x_0 = 1 \tag{1}$$

$$f(x) = \ln x \tag{2}$$

$$f'(x) = 1/x,\tag{3}$$

we get

$$\ln(x) \approx \ln(x_0) + \frac{1}{x_0} \cdot (x - x_0) = x - 1.$$

• Suppose x = m/n. Then

$$\ln\left(\frac{m}{n}\right) \approx \frac{m}{n} - 1 = \frac{m-n}{n}$$

0.6 Transformed data

We construct an extra lnError variable in the capDat dataset.
 capDat = within(capDat, lnError <- log(capacity/nomval))
 head(capDat, 2)

```
## capacity nomval sample lnError
## 1 45.69 47 s_1_nF47 -0.02826815
## 2 45.71 47 s_1_nF47 -0.02783051
```

tail(capDat, 2)

capacity nomval sample lnError
499 145.7 150 s_5_nF150 -0.02908558
500 145.6 150 s_5_nF150 -0.02977216

• The resolution on Peters capacitance meter is with 1-2 decimal(s) in the 47/150 nF range, which means that only a limited number of different values(3-18) are observed for each capacitor. This means that box-plots and histograms are non-informative.

0.7 Model considerations

• Let us have a look at a summary of the data:

```
favstats(lnError~sample, data=capDat)
```

##		sample	min		Q1	median	Q3	max
##	1	s_1_nF47	-0.02958221	-0.0283	32287	-0.02804930	-0.02804930	-0.02783051
##	2	s_2_nF47	-0.02914399	-0.0278	83051	-0.02761176	-0.02761176	-0.02717441
##	3	s_3_nF100	-0.03521276	-0.033	99638	-0.03386707	-0.03366020	-0.03334998
##	4	s_4_nF150	-0.02565975	-0.024	46352	-0.02429269	-0.02429269	-0.02360987
##	5	s_5_nF150	-0.03045921	-0.029	77216	-0.02908558	-0.02908558	-0.02908558
##		mea	n	sd n	missi	ing		
##	1	-0.0283251	8 0.00050621	60 100		0		
##	2	-0.0278634	6 0.00051710	88 100		0		
##	3	-0.0339830	6 0.00050575	86 100		0		
##	4	-0.0245387	9 0.00058701	80 100		0		
##	5	-0.0294770	2 0.00055439	30 100		0		

- All measurements are more than 2.3% below the nominal value.
- This must be due to a systematic error on the meter.

0.8 Sources of variation

- We now have three sources of error:
 - Systematic errors of the measurement device
 - Production errors in the individual capacitors
 - Random measurement errors
- This leads us to consider the model

$$\ln\left(\frac{\text{measuredValue}}{\text{nominalValue}}\right) = \text{systematicError} + \text{productionError} + \text{measurementError}.$$

0.9 Statistical model

• We have the model:

$$\ln\left(\frac{\text{measuredValue}}{\text{nominalValue}}\right) = \text{systematicError} + \text{productionError} + \text{measurementError}$$

• We may write the model mathematically as

$$Y_{ij} = \mu + A_i + \varepsilon_{ij}$$

where

- $-Y_{ij}$ is the log error measurement (*j*th measurement from the *i*th capacitor)
- $-i = 1, \ldots, k$ is the number of the capacitor

- $-j = 1, \ldots, n$ is the number of the observation for that capacitor
- -k = 5 is the total number of capacitors
- n = 100 is the number of repetitions for each capacitor
- μ is the systematic error on the meter
- $-A_i$ is the random production error
- $-\varepsilon_{ij}$ is the random measurement error
- We make the following assumptions:
 - The production error A_i is normally distributed with mean 0 and variance σ_{α}^2 ,
 - The measurement error ε_{ij} is normally distributed with mean 0 and variance σ^2 .
- This is called a random effects model, see [WMMY] Chapter 13.11.

0.10 Estimation of systematic error

• The systematic error is simply estimated by the sample mean

 $\hat{\mu} = \bar{y}_{..}$

- The two dots indicate that we take the average over all observations from all capacitors.

```
muhat <- mean(capDat$lnError)
muhat</pre>
```

[1] -0.0288375

• The meter systematically reports a value, which is estimated to be 2.88% too low.

0.11 Estimation of random error

- We now try to estimate the variance σ_{α}^2 of the production error and the variance of the random measurement error σ^2 .
- We need two types of sum of squares:
- SSA (sum of squares between groups) measures how much the sample means for the individual capacitors $\bar{y}_{i.}$ deviate from the total sample mean $\bar{y}_{..}$

$$SSA = n \sum_{i} (\bar{y}_{i.} - \bar{y}_{..})^2$$

• SSE (*sum of squares within groups*) measures how much the individual measurements deviate from the sample mean of the capacitor they were measured on:

$$SSE = \sum_{ij} (y_{ij} - \bar{y}_{i.})^2$$

• Intuitively, SSA is closely related to the variance of the production error σ_{α}^2 , while SSE is closely related to the variance of the random measurement error σ^2 .

0.12 Fit

• The sum of squares may be found from:

fit <- lm(lnError ~ sample, data = capDat)
anova(fit)</pre>

```
## Analysis of Variance Table
##
## Response: lnError
              Df
##
                    Sum Sq
                               Mean Sq F value
                                                   Pr(>F)
## sample
               4 0.0046576 0.00116440 4067.4 < 2.2e-16 ***
## Residuals 495 0.0001417 0.00000029
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  • We can extract the sum of squares as follows
SS <- anova(fit) $`Sum Sq`
SSA < - SS[1]
SSE <- SS[2]
SSA
## [1] 0.004657588
SSE
```

[1] 0.0001417076

0.13 Solution

• One may show (see [WMMY] Theorem 13.4):

$$E(SSA) = (k-1)\sigma^2 + n(k-1)\sigma_{\alpha}^2$$
$$E(SSE) = k(n-1)\sigma^2$$

• Using the approximations

$$E(SSA) \approx SSA, \qquad E(SSE) \approx SSE$$

we obtain the estimates

$$\hat{\sigma}^2 = \frac{1}{(n-1)k} SSE = \frac{1}{99 \cdot 5} \cdot 0.0001417 = 2.86 \cdot 10^{-7}$$
$$\hat{\sigma}^2_{\alpha} = \frac{1}{n(k-1)} SSA - \frac{\hat{\sigma}^2}{n} = \frac{1}{100 \cdot (5-1)} \cdot 0.0046576 - \frac{2.86 \cdot 10^{-7}}{100} = 1.16 \cdot 10^{-5}$$

0.14 Summing up

- The meter has an estimated systematic error of $\hat{\mu} = -2.88\%$.
- The estimated standard deviation of the meter is $\hat{\sigma} = \sqrt{2.86 \cdot 10^{-7}} = 0.0534\%$.
- The estimated standard deviation of the production error is $\hat{\sigma}_{\alpha} = \sqrt{1.16 \cdot 10^{-5}} = 0.341\%$.
- Since 99.7% (practically all) of all observations fall within $\pm 3 \cdot \sigma_{\alpha}$ from 0, we have that the production error falls within

$$\pm 3 \cdot 0.341\% = 1.02\%$$

of the nominal value, which is in accordance with the tolerance of 1%.

• The total estimated variance of the log error is

$$\hat{\sigma}_{\alpha}^2 + \hat{\sigma}^2 = 1.16 \cdot 10^{-5} + 2.86 \cdot 10^{-7} = 1.19 \cdot 10^{-5}.$$

- The variance is clearly dominated by the production error.

• Note that especially the estimate $\hat{\sigma}_{\alpha}$ is quite uncertain, since we only have measurements from 5 capacitors.

0.15 Test of no random effect

• We have the possibility of testing the hypothesis

$$H_0: \sigma_\alpha = 0$$

• The formulas for E(SSA) and E(SSE) were

$$E(SSA) = (k-1)\sigma^2 + n(k-1)\sigma_{\alpha}^2$$
$$E(SSE) = k(n-1)\sigma^2.$$

• Under H_0 , this is means that

$$\frac{1}{k-1}E(SSA) = \frac{1}{k(n-1)}E(SSE) = \sigma^2.$$

• Under H_0 , the F statistic

$$F_{obs} = \frac{\frac{SSA}{k-1}}{\frac{SSE}{k(n-1)}}$$

has an F-distribution with degrees of freedom $df_1 = k - 1$ and $df_2 = k(n - 1)$. - Large values are critical for the null-hypothesis.

• In the capacitor dataset $F_{obs} = 4067.4$, which is highly significant (p-value close to 0). - Our capacitors do have some production errors.

0.16 Coefficient of variation

- Let X be a random variable with mean μ and standard deviation σ .
- If we are interested in relative variation, it is common to look at the coefficient of variation

$$CV(X) = \frac{\sigma}{\mu}$$

- Standard deviation relative to the mean

– Unit-free

• If X is normal, then 95% of our measurements are within

$$\mu \pm 2 \cdot \sigma = \mu \pm 2 \cdot \mu \cdot CV(X) = \mu(1 \pm 2 \cdot CV(X)).$$

• If e.g. CV(X) = 0.05, it means that 95% of all observations are within $2 \cdot 0.05 = 10\%$ of the mean.

0.17 The lognormal distribution

- In the preceeding analysis, we assumed that the log-transformed errors had a normal distribution.
- Let X be a random variable and $Y = \ln(X)$.
- We say that X has a lognormal distribution if Y has a normal distribution with say mean μ and standard deviation σ .
- Here are some plots of the density of the lognormal distribution:

0.18 Coefficient of variation for lognormal distribution

- Suppose X has a log-normal distribution, so that $Y = \ln(X)$ has a normal distribution with mean μ and standard deviation σ .
- Then the mean and variance are given by (Theorem 6.7 of [WMMY]):

$$E(X) = \exp(\mu + \sigma^2/2)$$
$$Var(X) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$$

• The coefficient of variation is then

$$CV(X) = \frac{\sqrt{Var(X)}}{E(X)} = \frac{\sqrt{\exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)}}{\exp(\mu + \sigma^2/2)} = \sqrt{\exp(\sigma^2) - 1}$$

• In Peter's data we estimated the variance of the ln error to $\hat{\sigma}_{\alpha}^2 = 1.16 \cdot 10^{-5}$, which means that the estimated CV of the capacity measurement is

$$\widehat{CV}(X) = \sqrt{\exp\left(1.16 \cdot 10^{-5}\right) - 1} = 0.341\%.$$

0.19 Linear calibration

• In our previous analysis, we assumed, that the systematic error on the meter did not depend on nominal value.

$$\ln\left(\frac{\text{measured Value}}{\text{nominal Value}}\right) = \text{meter Error} + \text{random Error}$$

• To check this assumption consider the linear model

 $\ln(\text{measuredValue}) = \alpha + \beta \cdot \ln(\text{nominalValue}) + \varepsilon.$

• Note that the previously considered model corresponds to $\beta = 1$.

0.20 Linear calibration fit

```
• We fit the linear model:
fit <- lm(log(capacity) ~ log(nomval), data = capDat)</pre>
summary(fit)
##
## Call:
## lm(formula = log(capacity) ~ log(nomval), data = capDat)
##
## Residuals:
##
          Min
                      1Q
                             Median
                                             ЗQ
                                                       Max
## -0.0064121 -0.0010784 0.0007315 0.0013879
                                                0.0050839
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0300145 0.0011907 -25.21
                                                <2e-16 ***
## log(nomval) 1.0002636 0.0002648 3776.74
                                                <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.003101 on 498 degrees of freedom
## Multiple R-squared:
                            1, Adjusted R-squared:
                                                          1
## F-statistic: 1.426e+07 on 1 and 498 DF, p-value: < 2.2e-16
```

- The slope looks close to 1.
- We may test the null-hypothesis $H_0: \beta = 1$.

$$t_{obs} = \frac{1.0002636 - 1}{0.0002648} = 0.995.$$

This yields a p-value of around 32%.

- It is a bit dubious to model a linear relationship with only 3 nominal values.
- Also note that we have correlated measurements, since several measurements are made on the same capacitors.

0.21 Calibrated values

- If we stick to the linear calibration model, it is sensible to correct our measured errors according to the calibration of the meter.
- We have the model:

measuredValue =
$$\alpha + \beta * \text{nominalValue}$$

• We compute the calibrated values

```
calibratedValue = (measuredValue - \alpha)/\beta
```

• We estimate the coefficients α and β and calibrate the measurements.

ab = coef(fit)
ab

```
## (Intercept) log(nomval)
## -0.03001454 1.00026359
capDat$lnError_c = (capDat$lnError - ab[1])/ab[2]
head(capDat)
##
     capacity nomval
                       sample
                                   lnError
                                             lnError_c
## 1
        45.69
                  47 s_1_nF47 -0.02826815 0.001745930
## 2
        45.71
                  47 s_1_nF47 -0.02783051 0.002183452
        45.69
## 3
                  47 s_1_nF47 -0.02826815 0.001745930
        45.71
## 4
                  47 s_1_nF47 -0.02783051 0.002183452
## 5
        45.70
                  47 s_1_nF47 -0.02804930 0.001964715
## 6
        45.69
                  47 s_1_nF47 -0.02826815 0.001745930
```

1 Lot variation

- Picture of a "lot" of capacitors.
- The word lot is used to identify several components produced in a single run.

- A run is a production series limited to a given time interval and fixed production parameters.

- We expect components from the same lot to be more similar.
- Peter Koch has tested 269 of the capacitors in the displayed lot (one measurement for each).

Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
summary(Cap220)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	197.2	204.8	207.9	207.9	210.9	218.6

2 Testing for log normality

2.1 Log normality

• Last time we assumed log normality of the relative measurements:

$$\ln\left(\frac{\text{measuredValue}}{\text{nominalValue}}\right) \sim \text{norm}(\mu, \sigma).$$

- The data we considered last time did not allow us check this assumtion.
- We have seen that normality can be checked with a qqplot (lecture 1.3, [WMMY] Sec. 8.8).

```
Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
ln_Error=log(Cap220/220)
qqnorm(ln_Error,ylab="ln_Error")
qqline(ln_Error,lwd=2,col="red")
```


Theoretical Quantiles

• The qq-plot supports normality of ln_Error.

2.2 Testing normality

• One can also make a test of the null-hypothesis

 H_0 : the population has a normal distribution.

- There are several tests of normality.
- Two of these are considered in [WMMY] Section 10.11:
 - Gearys test
 - goodness of fit

2.3 Gearys test

- Consider a sample X_1, \ldots, X_n from a population.
- We may estimate of the standard deviation σ of the population:

$$S_0 = \sqrt{\frac{1}{n} \sum_i (X_i - \bar{X})^2}$$

- $-S_0$ is always a good estimator of the population standard deviation σ no matter the form of the population distribution.
- Next consider

$$S_1 = \sqrt{\frac{\pi}{2}} \sum_i |X_i - \bar{X}| / n$$

- This is a good estimator of σ , if the population is normal.
- Otherwise, it will over- or underestimate σ depending on the form of the population distribution.

2.4 Gearys test

• If the population distribution is normal, we expect that

$$U = \frac{S_1}{S_0}$$

is close to 1.

• Under the null-hypothesis,

$$Z = \frac{\sqrt{n}(U-1)}{0.2661}$$

is approximately standard normally distributed when n is large.

- That is, with a significance level of 5%, we reject the null-hypothesis if $|z_{obs}| > 1.96$.
- We can do all the computations in R.

```
mln_E=mean(ln_Error)
s1=sqrt(mean((ln_Error-mln_E)^2))
s0=sqrt(pi/2)*mean(abs(ln_Error-mln_E))
u=s1/s0
z_obs=sqrt(length(ln_Error))*(u-1)/0.2661
z_obs
```

[1] -1.383383

- We do not reject the null-hypothesis.
- Hence there is no evidence of non-normality.

2.5 Goodness of fit - die example

- Goodness of fit is a general method for investigating whether a sample comes from a specific distribution.
- Before considering test for normality, we consider a simpler example (see [WMMY] Sec. 10.11).
- Suppose we roll a die. We have the null-hypothesis that the die is fair, i.e. the probabilities of the outcomes (1, 2, 3, 4, 5, 6) are

(1/6, 1/6, 1/6, 1/6, 1/6, 1/6).

• Rolling the die 120 times, we expect the frequencies

(20, 20, 20, 20, 20, 20)

• Actually we observe the frequencies

(20, 22, 17, 18, 19, 24)

• The distance between observed and expected frequencies is measured by

$$X^{2} = \sum \frac{(\text{ObservedFrequencies} - \text{ExpectedFrequencies})^{2}}{\text{ExpectedFrequencies}}$$

2.6 Goodness of fit - die example

- If the null-hypothesis is true (the die is fair), then
 - X^2 has a chi-square distribution (Lecture 1.4, [WMMY] Chapter 6.7) with df=k-1=5 degrees of freedom, where k = 6 is the number of possible outcomes.
 - large values of X^2 are critical for the null-hypothesis.
- For the example on the previous slide:

$$-x_{obs}^2 = 1.7$$

critical_value <- qdist("chisq", .95, df = 5)</pre>

[1] 11.0705

• At 5% significance level the critical value is 11.07, so there is no evidence against the null-hypothesis of a fair die.

2.7 Goodness of fit - normal distribution

- We assume that ln_Error is a sample from a normal distribution.
- We estimate its mean and standard deviation by the sample mean and sample standard deviation
- We divide the population distribution into 10 bins with equal probabilities p=10\%.
 - The number of bins could be changed.
 - The bins should be so large, that the expected frequencies in each is at least 5.

```
m <- mean(ln_Error)
s <- sd(ln_Error)
breaks <- qnorm((0:10)/10, m, s)</pre>
```

Histogram and population curve

- Area in each bin of the red population curve is 0.1
- As the sample size is 269 we obtain that the expected frequency is 269 * 0.1 = 26.9 in each bin.
 - This is clearly above 5

2.8 Goodness of fit - normal distribution

```
• Observed frequecies:
observed <- table(cut(ln_Error, breaks))</pre>
names(observed) <- paste("bin", 1:10, sep = "")</pre>
observed
    bin1
          bin2
                 bin3
                        bin4
##
                               bin5
                                     bin6
                                            bin7
                                                   bin8
                                                          bin9 bin10
      25
             37
                    25
                           19
##
                                 28
                                        30
                                               21
                                                     25
                                                            25
                                                                   34
  • We compute the X^2 statistic:
chisq_obs <- sum((observed-26.9)^2)/26.9
chisq_obs
```

[1] 10.21933

• The degrees of freedom is the number of bins minus 3 (number of parameters + 1), i.e. df = 10-3 = 7.

2.9 Goodness of fit - normal distribution

```
• We had computed the value of X^2
```

chisq_obs

[1] 10.21933

• We find the critical value

[1] 14.06714

- Since X^2 is smaller than the critical value, we do not reject the null-hypothesis
- We could also have used the p-value

```
p_value <- 1 - pchisq(chisq_obs, 7)
p_value</pre>
```

[1] 0.1764812

• We do not reject normality at level 5%.

2.10 Other tests of normality

- There are many other tests of normality.
- We mention one of the most commonly used tests: Shapiro-Wilks.
- It is standard in R.
- We do not treat the details, but the test statistic is somewhat like a correlation for the qq-plot.

- If the "correlation is far from 1", we reject normality.

shapiro.test(ln_Error)

```
##
## Shapiro-Wilk normality test
##
## data: ln_Error
## W = 0.99255, p-value = 0.1971
```

• With a p-value of 19.71%, we do not reject normality, if we test on level 5%.

3 Sources of variation

- In lecture 4.1 we discussed 3 sources of variation:
 - systematic measurement error
 - random measurement variation
 - production variation
- Generally it is relevant to decompose the production variation in 2 components:
 - variation within lot, i.e. the variation around the lot mean

- variation between lots, i.e. the variation of the lot means.

3.1 The general model

• The completely general model would be:

measuredValue = systematicError + lotError

+ component Error + measurement Error

• In mathematical notation

$$Y_{k,i,j} = \mu + L_k + C_{k,i} + \varepsilon_{k,i,j}$$

where

- -k is the number of the lot
- -i is the number of the component in lot k
- -j is the number of the measurement on component (k, i).
- The errors are assumed random and normal
 - Lot errors $L_k \sim norm(0, \sigma_l)$
 - Errors on individual component within lot $C_{k,i} \sim norm(0, \sigma_c)$
 - Measurement errors $\varepsilon_{k,i,j} \sim norm(0,\sigma_m)$

3.2 Model for our data

- As we have one lot only, we cannot identify the variation between lots.
 - We will consider the lot mean as fixed number μ_l
- We only have one measurement on each component
- The model for our data reduces to (since k = 1 and j = 1 we omit them from notation)

$$Y_i = \mu + \mu_l + C_i + \varepsilon_i$$

where

- $-i = 1, \ldots, 269$ is observation number
- $-\mu$ is systematic measurement error
- $-\mu_l$ is systematic lot error
- $-C_i \sim norm(0, \sigma_c)$ is variation within lot
- $-\varepsilon_i \sim norm(0, \sigma_m)$ is measurement error

3.3 Linear calibration

- In lecture 4.1 we developed a linear calibration to eliminate the systematic measurement error.
- To remove the systematic measurement error, we apply this calibration to our new dataset.

```
load("ab.RData")
```

```
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = "FD", col = "wheat")
```

Histogram of In_Error_corrected

3.4 Model for calibrated data

• After calibration, we will assume that the systematic measurement is zero, leaving us with the model for the calibrated values:

 $Y_i = \mu_l + C_i + \varepsilon_i$

where

- $-i = 1, \ldots, 269$ is observation number
- $-\mu_l$ is systematic lot error
- $-C_i \sim norm(0, \sigma_c)$ is variation within lot
- $-\varepsilon_i \sim norm(0, \sigma_m)$ is measurement error
- We are this left with a normally distributed sample with

 $- \text{ mean } \mu_l$

– variance $\sigma_c^2 + \sigma_m^2$

3.5 Estimate of parameters

• Estimate of μ_c

myl <- mean(ln_Error_corrected)
myl</pre>

[1] -0.02686793

- That is, the systematic lot error is around -2.7%.
- Estimate of $\sigma_m^2 + \sigma_c^2$

var(ln_Error_corrected)

[1] 0.0003892828

• That is $s_m^2 + s_c^2 = 3.9 \cdot 10^{-4}$.

- In lecture 4.1 we estimated $s_m^2 = 0.29 \cdot 10^{-6}$ and hence $s_c^2 = 3.9 \cdot 10^{-4}$

$$s_c = \sqrt{3.9 \cdot 10^{-4}} = 0.02$$

• 3 sigma limits for the corrected lot values:

$$-2.7\% \pm 3 \cdot 2.0\% = [-8.7; 3.3]\%$$

clearly respecting the 10% tolerance.

4 Mixture of lots

• Peter has also tested 311 capacitors with nominal value 470 nF

```
cap470 <- read.table(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_470_nF2.txt"))[, 1]
hist(cap470, breaks = 15, col = "greenyellow")</pre>
```


• Consulting Peter, it turned out, that his box of capacitors contained components from 2 different lots.

4.1 Transforming

• We ln-transform and calibrate:

```
ln_Error <- log(cap470/470)
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = 15, col = "gold")</pre>
```

Histogram of In_Error_corrected

range(ln_Error_corrected)

```
## [1] -0.08888934 0.08323081
```

4.2Mixture model

- We assume that the ln Error
 - is normal with mean μ_1 if the component is from lot 1
 - is normal with mean μ_2 if the component is from lot 2
 - both distributions have variance $\sigma^2 = \sigma_m^2 + \sigma_l^2$ the probability of coming from lot 1 is p
- So we have 4 unknown parameters: $(\mu_1, \mu_2, \sigma, p)$.
- To estimate these, we entrust to the R-package mclust.

4.3 Fitting a mixture

• We fit the model

```
library(mclust)
fit <- Mclust(ln_Error_corrected, 2 , "E")# 2 clusters; "E"qual variances</pre>
pr <- fit$parameters$pro[1]</pre>
pr
```

[1] 0.728314

• The chance of coming from lot 1 is around 73%.

```
means <- fit$parameters$mean</pre>
means
```

```
## 1 2
## -0.05174452 0.05406515
• The mean in lot 1 is around -5.2%
• The mean in lot 2 is around 5.4%
sigma <- sqrt(fit$parameters$variance$sigmasq)
sigma
## [1] 0.01692654
```

• σ is around 1.7%

4.4 Comparing model and data

• We compare the histogram with the fitted normal curves.

hist(ln_Error_corrected,breaks=15,col="lightcyan",probability = TRUE,ylim=c(0,18),main="Histogram and p curve(pr*dnorm(x,means[1],sigma)+(1-pr)*dnorm(x,means[2],sigma),-.1,.1,add=TRUE,lwd=2)

Histogram and population curve

4.5 Concluding remarks

- Estimate of σ was 1.7%. In relation to the 220 nF lot we estimated 2.0%, which is comparable.
 - 3 sigma limits for the correct lot 1 values:

$$-5.2\% \pm 3 * 1.7\% = [-10.3; -0.1]\%$$

- 3 sigma limits for the correct lot 2 values:

$$5.4\% \pm 3 * 1.7\% = [0.3; 10.5]\%$$

• The lots do not completely respect the tolerance of 10%. However, in the sample the minimum is -8.9% and the maximum 8.3%.

- The difference in lot means is 5.4% (-5, 2)% = 10.6.
- This indicates that the variation between lots is much greater than the variation within lots.
- This is also clearly illustrated by the histogram/density plots.